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Measuring bending rigidity and spatial renormalization
in bicontinuous microemulsions
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Abstract. – We demonstrate a new approach to determine the bending rigidity of the am-
phiphile film in microemulsions and sponge phases from neutron scattering data. This method
is precise enough to measure the logarithmic scale dependence of the bending rigidity and its
universal prefactor for the first time. Furthermore, we show that in the mushroom regime the
bending rigidity of a membrane decorated by amphiphilic block copolymers increases linearly
with the polymer concentration on the membrane; the amplitude is found to be about a factor
1.5 larger than theoretical results for ideal chains.

Our understanding of the structure and phase behavior of binary and ternary amphiphilic
systems is based to a large extent on the description of the surfactant layers, which divide oil
and water on a mesoscopic scale, in terms of their curvature elasticity [1–3]. The shapes and
fluctations of these membranes are controlled in the curvature model by two elastic moduli,
the bending rigidity κ and the saddle-splay modulus κ̄, and the preferred (or spontaneous)
curvature c0. Though this has been questioned recently [4], both moduli are considered to be
spatially renormalized [5–11] by thermal fluctuations for small surfactant volume fractions.
Neither the logarithmic spatial renormalization of the bending rigidity as such, nor its strength,
and not even κ itself have ever been measured in bicontinuous microemulsions.

This lack of accessibility can be traced back to the fact that up to now it was impossible
to vary systematically both the length scales and the elastic properties of the surfactant films
in a controlled way over a wide range. Furthermore, the standard techniques to measure κ
for low-bending-rigidity membranes (with κ ∼ kBT ) —which analyze the shape fluctuations
of microemulsion droplets [12], the membrane fluctuations in the lamellar phase [13], or the
surface tension of the interface between a droplet microemulsion and the water-rich phase
[14]— are not applicable to bicontinuous systems.

In this letter, we use ternary bicontinuous microemulsion, where by minute additions of
amphiphilic diblock copolymers the membrane properties can be tuned continuously [15, 16],
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to demonstrate that the relations between scattering and curvature elasticity originating from
the Gaussian-random-field model [17] can be used quantitatively to evaluate the bending
rigidity. With this approach, we are able to show directly the existence of the logarithmic scale
dependence of the bending rigidity for the first time. Furthermore, we are able to determine its
universal prefactor, which has been under debate for more than a decade [5,6,18–20]! Finally,
we are able to extract the universal amplitude of the dependence of the bending rigidity on
the dimensionless polymer grafting density in the mushroom regime, which is found to be
somewhat larger than predicted theoretically [21] for ideal chains.

The background of our approach is the use of the Gaussian-random-field model (GRFM)
for a variational calculation [17] of the free energy of an ensemble of membranes described by
the curvature elasticity [1]

H =
∫

dS
[κ

2
(c1 + c2)2 + κ̄c1c2

]
, (1)

where c1 and c2 are the principal curvatures at each point of the membrane, and the integral
extends over the whole membrane area. The membrane configurations in the microemulsion
phase are described by the Φ(r) = 0 level surfaces of the Gaussian random field, which is
controlled by the free-energy functional

H0[Φ] =
1
2

∫
d3q ν(q)−1Φ(q)Φ(−q) (2)

with the constraint 〈Φ(r)2〉 = 1. The scalar field Φ(r) can be understood as a local concen-
tration difference between oil and water, which disappears at the interface. The result of this
variational approach is the optimal spectral density [17]

ν(q) =
a

q4 − bq2 + c
, (3)

where a, b and c are independent of κ̄, and a = (15π2/16)(kBT/κ)(S/V ) with membrane area
S and sample volume V .

The coefficients b and c in eq. (3) can easily be calculated exactly in this model; they
are not too complicated functions of the bending rigidity κ and the membrane concentration
S/V . For large κ, these expressions simplify [17] to b = (3π2/2)(S/V )2 and c = b2/4. The
spectral density of eq. (3) is equivalent to a bulk correlation function of exponentially damped
sinusoidal waves with a correlation length ξ and a propagation vector k = 2π/d, where d is
the characteristic domain size. The results for a, b and c imply, in particular, that

kξ =
64

5
√

3
κ

kBT
Θ

(
κ

kBT
, δ

S

V

)
(4)

with an algebraic function Θ(x, y), which approaches unity for large κ. Here, δ S/V ≡ φs is
the membrane volume fraction, where δ is the membrane thickness. With decreasing values
of κ and/or S/V , the structure factor in the GRFM develops a singularity at q = 0, which
indicates an instability towards a macroscopic phase separation of oil and water [17].

In a second step, we note that recent results from experiments [8, 15] and computer sim-
ulations of randomly triangulated surfaces [19, 22] provide strong evidence that the GRFM
does not capture all essential aspects of an ensemble of thermally fluctuating membranes. In
particular, it does not contain the effect of the scale-dependence of the renormalized elastic
moduli [5–7]

κR(�) = κ − α
kBT

4π
ln(�/δ) (5)
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Fig. 1 – Experimental paths in the phase diagram (at equal volume fractions of oil and water) of a
balanced microemulsion containing small amounts of amphiphilic PEP-PEO diblock copolymer, as
a function of surfactant volume fraction φs and polymer volume fraction φδ in the mixture of both
amphiphiles. The different symbols indicate the experimental compositions for PEP5-PEO5 (◦, �)
and PEP10-PEO10 (�).

—and, similarly, κ̄R(�) with prefactor ᾱ— on the length scale �, where δ is the size of the
surfactant molecules. Therefore, the location of the emulsification phase boundary predicted
from the GRFM —indicated by the approach of the coefficient c(κ, φs) in eq. (3) to zero—
does not agree with the predictions based on the renormalization of κ and κ̄, where this phase
boundary is determined by the relation κ̄R(�) = 0, with � ∼ V/S [9,10]. It has been argued in
ref. [23] that the failure of the GRFM may be traced back to an overestimate of the entropy
due to bulk fluctuations in the oil- and water-regions.

Thus, we propose in a third step to discard the singularities of the dimensionless ratio
kξ as predicted by the Gaussian-random-field model for small κ or small surfactant volume
fraction φs, but assume that the result for large κ gives the correct behavior. As indirect
evidence that the GRFM does indeed predict some aspects of the leading behavior in kBT/κ
and kBT/κ̄ correctly, we consider the dependence of the free-energy density of a balanced
microemulsion on the saddle-splay modulus κ̄. The GRFM predicts a contribution −µκ̄φ3

s

with µ = 5π2/40 = 1.234 [17], while Monte Carlo simulations give µ = 1.26 ± 0.12 [22]
—obviously in very good agreement.

Therefore, we conjecture to replace the Gaussian-random-field result for the κ- and φs-
dependence of kξ by

kξ =
64

5
√

3
κR(φs)
kBT

, (6)

where κR is given by eq. (5), i.e. we propose to replace the function Θ in eq. (4) by κR(φs)/κ
for all κ and φs. The relation (6) and its experimental verification, discussed below, are the
main results of this letter.

It is important to realize that the values of the universal prefactors α and ᾱ are still under
debate. Most calculations [5, 7, 18] arrive at the values

α = 3, ᾱ = −10/3, (7)

which imply a softening of the membrane with increasing membrane size. These values are also
consistent with recent Monte Carlo simulations of triangulated surfaces [19,22]. Helfrich [20],
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Fig. 2 – Small-angle neutron scattering intensities I(Q) for two paths in the phase diagram. (a) Along
the constant surface line φs = 0.12, with φδ = 0.03 (◦), φδ = 0.045 (�), φδ = 0.06 (�), φδ = 0.074
(�), and φδ = 0.09) (�). (b) Along the three-phase coexistence line, with φs = 0.131, φδ = 0.0 (•);
φs = 0.098, φδ = 0.022 (�); φs = 0.071, φδ = 0.048 (�); φs = 0.059, φδ = 0.070 (�); and φs = 0.044,
φδ = 0.101 (�). The solid lines represent fits with eq. (3).

on the other hand, has argued recently that α = −1 and ᾱ = 0, which indicates a stiffening
of the membrane at large length scales.

Finally, we have to consider a surfactant membrane which is decorated by amphiphilic
block copolymers. For ideal polymer chains (without self-avoidance), it has been shown in
ref. [21] that in the mushroom regime

κeff = κ0 +
kBT

12

(
1 +

π

2

)
σ(R2

w + R2
o) , (8)

where σ is the number density of block copolymer on the membrane and Rw/o is the end-to-
end distance of hydrophilic/hydrophobic polymer block. For a polymer-decorated membrane,
we have to replace κ by κeff in eq. (5).

In our experiments, balanced oil-water microemulsions based on the non-ionic surfac-
tant C10E4 and containing various amounts of amphiphilic block-copolymers of PEPx-PEOy
(polyethylenepropylene/polyethyleneoxide with x = y = 5, 10 kg/mol) were investigated.
Experiments were performed at constant membrane area (φs = 0.12 and φs = 0.08) by vary-
ing the relative polymer volume fraction, φδ, in the mixture of amphiphiles, and along the
three-phase coexistence line, see fig. 1.

The small-angle neutron scattering (SANS) experiments were performed at the KWS1
instrument at the FRJ-2 reactor in Jülich. We are interested here in bulk contrast, which is
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Fig. 3 – Dimensionless ratio kξ of the two lengths scales characterizing the structure of a bicontinuous
microemulsion. Data are shown for PEP5-PEO5 with membrane volume fraction φs = 0.12 (◦) and
φs = 0.08 (�), and for PEP10-PEO10 along the three-phase coexistence line (�), in all cases as a
function of the polymer volume fraction φδ in the mixture of both amphiphiles.

Fig. 4 – The effective bending rigidity κeff of a membrane decorated by amphiphilic block copolymers,
as a function of the dimensionless density σ(R2

o +R2
w) of polymers on the membrane. Data are shown

for membrane volume fraction φs = 0.12 (◦), φs = 0.08 (�), and along the three-phase coexistence
line (�); compare fig. 3.

conveniently measured with deuterated water and protonated oil. Figure 2a presents SANS
results for φs = 0.121 and varying polymer content φδ. Since the membrane area is constant,
the position of the scattering peak determined by the domain size remains unchanged. The
addition of polymer sharpens the peak, indicating an increase of the correlation length ξ and
via eq. (6) an increase of κ. Figure 2b presents data taken along the coexistence line. Since φs

is reduced with increasing φδ in this case, the domain size increases and the scattering peak
shifts to smaller q. Its shape remains nearly unchanged.

In the region around the scattering peak, the data were fitted with eq. (3), which reveals k
and ξ. Our results for kξ are displayed in fig. 3. The data provide strong evidence that several
of the assumptions in our derivation of eq. (6) are indeed correct. First, the results for fixed
surfactant volume fraction are linear in φδ (or σ) with a slope independent of φs. This indicates
that —for fixed φs— the dimensionless product kξ is indeed a linear function of the bending
rigidity. Second, the data for smaller surfactant concentration appear at smaller values of kξ,
which is consistent with α > 0, i.e. a softening of the membrane due to thermal fluctuations
on smaller scales. Finally, the slope of the data along the phase boundary is much smaller than
for fixed surfactant concentration. This is again consistent with eqs. (5) and (8), since the
emulsification failure phase boundary is very well described by ln(φs/φ∗) = −4πκ̄eff/(ᾱkBT ),
with κ̄eff = κ̄0 − (kBT/6)σ(R2

o + R2
w) and a constant φ∗ of order unity [15], so that

κR(σ) =
(
κ0 − α

ᾱ
κ̄0

)
+

kBT

12

[
1 +

π

2
+ 2

α

ᾱ

]
σ

(
R2

w + R2
o

)
(9)

along this line. For α = 3 and ᾱ = −10/3 of eq. (7), we thus expect a slope of the dependence of
κR(σ) on the dimensionless polymer grafting density of [π/2−4/5]/12 = 0.0642 which is much
smaller (more than a factor 3) than the polymer effect at fixed membrane volume fraction,
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where the slope is given by (1 + π/2)/12 = 0.214. We want to point out parenthetically that
Helfrich’s values of α = −1 and ᾱ = 0 would imply an infinite slope in eq. (9); higher-order
terms in the renormalization of κ̄ have to be taken into account in this case. Thus, along
the phase boundary, the two contributions to the bending rigidity —of the stiffening of the
membrane due to the presence of the polymer, and the additional fluctuation modes due to
the decreased membrane volume fraction— cancel each other to a large extent.

A more stringent comparison can be made by using eqs. (6) and (5) to extract κeff . All
the data shown in fig. 3 are indeed found to collapse very nicely onto a single curve, when
the values 64/(5

√
3) and α = 3 are used in eqs. (6) and (5), respectively, as demonstrated in

fig. 4. A fit of α in eq. (5) yields α = 2.96 ± 0.2. Thus, Helfrich’s value of α = −1 [20] can
now clearly be ruled out. Finally, the slope of κeff as a function of the dimensionless polymer
grafting density can be compared with the theoretical result [21] for ideal polymer chains. We
find a slope Ξ = 0.334, which is about a factor 1.5 larger than the slope (1 + π/2)/12 = 0.214
expected from eq. (8). This is entirely consistent with a similar increase of the magnitude of
the polymer effect observed in ref. [15] for the effective saddle-splay modulus κ̄. We believe
that the different values of Ξ reflect the different properties of polymers in good and in theta
solvents. A previous measurement [24] of the effect of anchored polymers on the bending
rigidity of lipid bilayer vesicles gave a considerably larger discrepancy of a factor 4 to 5, with
a linear dependence on the grafting density above the overlap concentration.

In summary, we have shown that the dimensionless ratio of the two characteristic lengths
in bicontinuous microemulsions provides a straightforward and very precise way of measuring
the bending rigidity of membranes. We have applied this approach to the investigation of
the effect of amphiphilic block copolymers on the curvature elasticity of membranes. At the
same time, this system provides the necessary test to validate some of the assumptions in
our theoretical derivation, and thus is a crucial element in establishing the approach. This
method can now be applied to many other systems. Two obvious candidates are polymeric
microemulsions [25], and ternary amphiphilic systems with the additive of non-adsorbing
polymers in one or both solvents [26].
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[9] Golubović L., Phys. Rev. E, 50 (1994) R2419.

[10] Morse D. C., Phys. Rev. E, 50 (1994) R2423.



G. Gompper et al.: Measuring bending rigidity 689

[11] Roux D., Nallet F., Coulon C. and Cates M. E., J. Phys. II, 6 (1996) 91; Porte G.,

Appell J. and Marignan J., Phys. Rev. E, 56 (1997) 1276.
[12] Huang J. S., Milner S. T., Farago B. and Richter D., Phys. Rev. Lett., 59 (1987) 2600;

Hellweg T. and Langevin D., Phys. Rev. E, 57 (1998) 6825.
[13] Safinya C. R., Roux D., Smith G. S., Sinha S. K., Dimon P., Clark N. A. and Bellocq

A. M., Phys. Rev. Lett., 57 (1986) 2718.
[14] Strey R., Colloid Polym. Sci., 272 (1994) 1005; Leitao H., Somoza A. M., Telo da Gama

M. M., Sottmann T. and Strey R., J. Chem. Phys., 105 (1996) 2875.
[15] Endo H., Allgaier J., Gompper G., Jakobs B., Monkenbusch M., Richter D.,

Sottmann T. and Strey R., Phys. Rev. Lett., 85 (2000) 102.
[16] Jakobs B., Scottmann T., Strey R., Allgaier J., Willner L. and Richter D., Langmuir,

15 (1999) 6707.
[17] Pieruschka P. and Safran S. A., Europhys. Lett., 22 (1993) 625; 31 (1995) 207.
[18] Cai W., Lubensky T. C., Nelson P. and Powers T., J. Phys. II, 4 (1994) 931.
[19] Gompper G. and Kroll D. M., J. Phys. I, 6 (1996) 1305.
[20] Helfrich W., Eur. Phys. J. B, 1 (1998) 481; Pinnow H. A. and Helfrich W., Eur. Phys. J.

E, 3 (2000) 149.
[21] Hiergeist C. and Lipowsky R., J. Phys. II, 6 (1996) 1465.
[22] Gompper G. and Kroll D. M., Phys. Rev. Lett., 81 (1998) 2284.
[23] Morse D. C., Curr. Opin. Colloid Interface Sci., 2 (1997) 365.
[24] Evans E. A. and Rawicz W., Phys. Rev. Lett., 79 (1997) 2379.
[25] Bates F. S., Maurer W. W., Lipic P. M., Hillmyer M. A., Almdal K., Mortensen K.,

Fredrickson G. H. and Lodge T. P., Phys. Rev. Lett., 79 (1997) 849.
[26] Bouglet G., Ligoure C., Bellocq A. M., Dufourc E. and Mosser G., Phys. Rev. E, 57

(1998) 834.


