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We propose a theoretical model for the motion of a spherical parti-
cle entrapped in a thin liquid film or in a monolayer of insoluble sur-
factant at the air/water interface. Both surface shear and dilational
viscosity, surface diffusion, and elasticity of the film are taken into
consideration. The drag force acting on the particle is analytically
calculated and asymptotic expressions of the problem are provided.
The relevance of the model is discussed by comparing the calculated
“viscoelastic” drag, )., to the one predicted by Saffman’s theory,
ys, for cylindrical inclusions in membranes. Numerical analyses are
performed to evaluate the contributions of the surface viscosity and
the diffusion coefficient of the layer on the hydrodynamical resis-
tance experienced by the particle. © 2000 Academic Press

Key Words: particle motion; thin film; drag force; hydrodynami-
cal resistance; surface viscosity; Gibbs elasticity; surface diffusivity.

1. INTRODUCTION

The problem of the motion of a solid particle in a viscous|_|
elastic layer pertains to a large variety of systems such as bio-
logical membranes, foam and emulsion films, and monolay ﬁ
of surface-active components. For instance, a protein in a mem-
brane can be roughly modeled as a cylindrical inclusion in
continuous film. A theory for the motion of this body in a bio

cylinder:

{s=4nns (1]

1
In(s/a) — C’

In EqQ. [1], ns is the membrane shear surface viscosity (note th:
surface viscosity has units of [bulk viscosityength] or surface
poises, sP) and = ns/n is a characteristic length which we will
refer to as the “Saffman lengthC =0.5772257 is the Euler—
Masceroni constant. Equation [1] is valid wherthe radius of
the disk (the cylindrical inclusion), is definitely smaller tHgn
Subsequently, Hughet al. (3) enlarged the region of validity
of the solution up to large particle sizes.

Interestingly, the theory was experimentally tested from th
observation of the Brownian motion of proteins in model mem
branes (6) and of circular solid lipid domains in a layer of fluic
lipid (7, 8). Results were found to be in line with the theory of
ugheset al. (3).

In Saffmann’s and related theories, the membrane is su
gsed to be an incompressible two-dimensional (2-d) fluic
is assumption is acceptable for artificial lipid membrane
and biological membranes. Conversely, thin liquid films anc

a . .
in general, monolayers of surface-active compounds differ frol

membranes in that they may be highly compressible. When

logical membrane was proposed by Saffman and Dek(1) Haarticle moves along the film, this provokes a compression at
and by Saffman (2). The theory was later generalized by Hug a‘lali expansion of the film ahead of and behind the particle, r

etal.(3), Bvans and Sackmann (4), and recently by Stone aé_‘pectively. A surface tension gradient results, which creates

Ajdari (5). Basically, Saffman computed the drag on a cylir]f ; . . . . )

) . . : . . force acting against the particle motion. This force has its or
drical particle undergoing translational and rotational motlonIn in the laver elasticity and mav be termed “Marandoni”. This
in a model lipid bilayer. He showed that the viscosityof the 9 y y y gonr-. th:

medium surrounding the particle had to be taken into account fgPcess 15 cou_nteracted by the surface diffusion of Suffa"‘a
molecules, which tends to make the surface concentration ul

the particle drag coefficientto be finite in the low Reynolds nur?c_)rm. Clearly, the elastic contribution to the particle friction will

ber regime (the convective term in the Navier—Stokes equatiBn L
) . . . be small whenever the layer compressibility is small or when th
may be neglected). Applying a singular perturbation technique

. . . Surfactant diffusion is fast.
Saffman (2) found an asymptotic solution of the problem in the To summarize, we expect the particle drag coefficient to d

limit of large membrane viscosity leading to an inverse logarith- . .
mic dependence of the resistance coefficient on the radius ofﬁjleend not only on the layer shear viscosit) but also on
€ dilational viscosity /{p), the Gibbs elasticity ), and the

surfactant diffusion coefficientlds). Only ns was taken into
1To whom correspondence should be addressed. Current address: ,\A:aq_n&deratlon in Refs. (1_5)'
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Germany. Fax: 49-331-567-9612. monolayers of surfactant molecules, or films made of two suc
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monolayers separated by a slot of bulk fluid. As for the diffu®ne finds that a steady force applied to the cylinder gives &
sion process, we will consider only surface diffusion, not thiefinite velocity; no solution for the flow field is found that
bulk diffusion (9). Strictly speaking, this restriction makes outan satisfy the Stokes equation and the boundary conditio
model applicable only to films of insoluble surfactants. Howsimultaneously (no-slip condition at the cylinder surface an
ever, it may be extended to soluble surfactants, provided that #ego flow velocity at infinity). To find a physically acceptable
concentration is below the critical micellar concentration (103olution, it is necessary to solve the full NS equation, which i
The model is not applicable to membranes made of a pure lipitbnlinear. Lamb’s approximation (14) for the convective tern
in this case it is impossible to define a Marangoni effect andnaakes the problem tractable, and yields the following result:
collective diffusive mode of the surface-active molecules.

Danovet al. (11) addressed the problem of a sphere floating 1
on a surfactant monolayer at the air/water interface, and numer- Fo=dmnV m- (2]
ically computed the particle drag coefficient with bathand © 2
np taken into account. The theory (which we will refer to a . . - .
DADL) was designed to interpret data from experiments aim Bthe gbove equatlorF,O. Is the fr|ct|pn forpe per unit Ien-gth of
at measuring film viscosities with spherical probes (12). DAD he cylinder.V is the cylinder velocity inside the 3-d fluid, and

is relevant to systems with low surface viscosity. The surfactal {S tf\l/e (|:_|ylinder. rat(r:i]iu;llo',dthe Osgen Igngth, .is .defi.nedlgt&
diffusion has to be fast enough to suppress the effect of the g‘llg/p ' e’re,p 'S the Tild mass e_nsny anis its viscosity.
Saffman’s and subsequent theories (1-5) address the probl

dient in the surface tension. Thus the main contribution to th disk inqin afil deofani ible fluid
friction is the surface viscosity. of a disk moving in a film made of an incompressible fluid, e.g.

A common and essential feature of Saffman’s theory and %]membrane. If the ﬁ”T‘ is in-vacuum, the problem is exactly th
DADL istherole played by the 3-d fluid surrounding the film: thgameas that ofthe cylinder in the (3-d) fluid. The analogy breal

particle drag coefficient (either a cylinder or a sphere) explicitg?wn i th?hmemtt)'ranefi?hin (cj:prll(tact V\gthda visg;uss-c:rrluisdt. I;
depends on the 3-d fluid viscosity. In this article, we consid IS case, e Motion ot Ie disk can be described by the Sto

D ; . - ; - tion, taking into account the coupling to the surroundin
a film in contact with a medium of negligible viscosity, e'g.eq_ua . .
a vacuum, and a particle trapped across this film. Our mo Mthtgs l:(;\p()jproach, f?.e\./elopea by S:ffmsanﬁ(Z), ¥|e|ds EQ' [1
may be relevant, for instance, to explain the motion of spo I the dis drag coefficients. Note that Saffman's equation

in vertical foam films (13). As we will see, the particle drageaS the same structure as the above Oseen’s equation, but v

coefficient ¢) does take on a finite value in the general ca ogf_'ferer;[ (ip]a}rac:_erlstlc(:j Iengttﬁ,. i ¢ Vi ha
when film elasticity, viscosity, and surface diffusion are taken Ince both Inértia and coupling o an external viscous pha:

into account. In other words, taking into consideration the abo& present in real syst(_ams, It s important _to guess which ol
mentioned Marangoni process leads to a finite drag force in ﬂﬁggences most the particle Qrgg. The question amo‘j”ts. tocol
Stokes regime, though there is no dissipation in the surroundipl%”nglo andls. Thels/lo ratio is simply equal to//V*, with
bulk phases. V =4./en/ps, €= 2._7;8. Herepsis th_e film sur_face mass den-
The paper is organized as follows. In Section 2, we set G- In the case _Of a_“p'd membrane in watéf, 'S on the o_rder
the basic equations of our problem. The film/layer is model 105 cm/s_, which is hug(_a compared o pre-1c_t|callpart|cle ve
as a 2-d compressible fluid, whose density obeys a diffusi '“?S' Th|§ means that inertia has a’negllglble mfluen_ce N
equation. We arrive at a set of equations for the vorticity arig® disk friction, and then that Saffman’s result, Eq. [1], is the
the divergence of the flow field, which are analytically solve levant one. . .
in Section 3. We then compute the force acting on the particl ,We nowcome FO our problem. We con_3|der_a Sphe“‘ia?' p?rt
which is the sum of viscous and elastic parts. In Section 4, , of radiusa, which is trapped across afilm (Fig. 1). By *film”,

thoroughly discuss the influences of the different film parameté’?’? rnean a slaz IOf aIV|scoe:gst|cthU|?l whosegmck?ess IfS'I ve
on the particle drag. Particularly, we examine the relevance?fpa compared ta. In practice, the Tim can be a toam 1im
our theory by comparingto zs, the drag coefficientin Saffman’s see Fig. 1a) or a surfactant monolayer at the water/air interfa

theory for a cylinder of the same size. We find different regime ee Fig. 1b). (The numerical results in Section 4 demonstra

which we tentatively relate to different examples of real systeni __at_ for_reasoqa_ble values of the bulk phase .V'SCOS'ty’ the bu
Section 5 is a conclusion. riction is negligible; thus the problem is pertinent as well for

a particle moving along a water/air interface.) The portion o

the particle in the plane of the film is a disk of radiais The

2. MATHEMATICAL FORMULATION particle moves along the film in thg-direction, with velocity
V. We suppose that the film is in a vacuum, which amounts t
The problem of an infinitely long cylinder moving insideneglecting couplings of the flow field in the film with surround-
an incompressible 3-d fluid leads to the well-known Oseeriisg 3-d fluids. In this context, the portions of the particle on bott
paradox. The paradox comes from neglecting the convectsiees of the film play no role; only the disk is important. For this
term in the Navier—Stokes (NS) equation, an approximatioaason, we will refer to the particle as a disk, whose radius wi

that one might expect to be valid in the low velocity limitbe denote, without loss of generality.
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surfactant:

Vso = —(;)VSF. [6]

0

E =—00/0InT is the film Gibbs elasticity, which will be sup-
posed to be constarity is the unperturbed (equilibrium) surface
concentration.

The above system of equations is closed by the mass balar
equation for the surface-active compound:

Vs- (TU — DsVsT) = 0. [7]

water

Ds, which we suppose to be constant, is the surfactant surfa
diffusion coefficient. Note that Eq. [7] is valid only for small

rTPerturbations, i.e., when remains close tdg. As we comment
in Appendix B, this condition is fulfilled only when the particle
velocity is small enough. Quantitatively, this implies that the
surface Peclet numbedPe=V a/Ds, is «1.

Since the thickness of the film is negligible, we apply a 2-d We define polar coordinates,, @), in the plane of the layer,
(membrane) approach. Our model is based on Scriven's equéth the origin set at the center of the particle ane: O taken
tions for interfacial hydrodynamics (15). The equations govefong thex axis. The polar components of the velocity vectol
the space—time evolution of surface—excess fields. For a statigfUr anduy.
ary motion, the mass conservation equation and the interfacialf we take into account the inertia term in Oseen’s manner, tt

FIG. 1. Geometry of the system: (a) particle trapped in a viscous fil
(b) particle floating on a monolayer at the air/water interface.

NS equation read (16) substitution of the surface viscosity tensbr,from Eg. [5] into
Eq. [4] yields the following system of second-order differentia
equations:

Ve- (pst) = 0 SRS
Vs (psuu) = Vso + Vs- T. (4] i }i ru }%
(77D+778)ar : ar( r)+r )

In Egs. [3] and [4]Vs denotes the surface gradieptjs the total s 9 }i(ru )— 10u, n do

surface—excess mass densitys the average mass velocity at r og|r or 7y ¢ ar

the surfaceg is the thermodynamic surface tension, anis

’ .. ou COoS¢ du co

the surface viscosity tensor. In Eg. [4] we omit a term which is — psV (smqba—r + —S¢a—r — —S¢u ) =0

related to the pressure jump occurring when crossing an interface ' r ¢ r 8]

between two continuous phases. In Appendix A we justify this 19109 10uy

approximation. (o + US)Fﬁ Ty U+ T 99

We suppose that the film fluid is Newtonian and that the sur- 9719 19 19
face viscosity tensor is related to the flow by the Boussinesg— 4 g— [——(ru¢) _ _ﬂ} + -9
Scriven constitutive law (15): or Lr ar rog rog
.. ou CoS¢ du co
T —pSV(SIn¢—¢+—S¢—¢+ sqsur):o.
T = (10— ns)(Vs- Ul +ns[(Vsu) -1 +1-(Vsu)' | [5] ar roo¢ r

g\/e suppose that the fluid does not slip along the particle surfa

Here,np andns are the interfacial dilational and shear surfac . ! P
viscosities, respectively. They are supposed to be constant. and that the particle does not perturb the flow field at infinity
' Then, for a snapshot of the velocity profile:

the unit surface idemfactor an&4u)" is the conjugate of the

Vsu tensor.

We are interested in interfacial films, i.e., systems involving U =Vsing, Uz =Vcosp atr=a [9]
a liquid whosg interfacial tension is modified by the adsorptlon. U 0, U 0. [10]
of surface-active molecules. This is the source of the Marangoni r—oo r—o0

effect. We simply suppose that the gradientifs proportional
to the gradient inl", the surface—excess mass density of tH&elow we apply methods developed for 2-d flow problems (17



38 DIMOVA ET AL.

We introduce the vorticity and stream functions, defined as experimental values suggegtcannot be less thary2. Conse-
quently the vorticity term in Eq. [15] is always important. As
1a(rug) 1oy 1o(rur)  1ouy we will see in the analysis of real systems;an be either large
w=-—=—-——, g=-—">+4+-——. [11] ) L )
roor r dg roor r d¢ or small, and then different limits must be discussed.

It is convenient to define dimensionless fields, 3.1. Incompressible Films

Whengq is very large § >> 1), the divergence is zero: this is

Ur =V, U =V, the limit of anincompressible fluid. From the definition, Eq. [13],

V. V. o+ ns,, .- large values ofy are favored by large particle sizes, high film
W= Ew’ o= Ea’ o= a Vo, [12] elasticities, small surface viscosities of the layer, and small di

fusion coefficients.
and dimensionless parameters, Theg-infinite limit brings us back to the Oseen problem anc
leads to Eq. [2] for the friction force. As we already commented
__7s m= psVa q= Ea? [13] the Oseen result for the drag coefficient is not the physically re
o +ns’ o +ns " Ds(mp + ns) evant one in this case because the viscosity of the surroundi

3-d phase cannot be ignored. In other words, the real drag co
prepresents the importance of shear viscosity relative to the tdfialent is that given by the Saffman—Hughes theory rather thz
viscosity.mis the surface Reynolds numbemay be viewed as by the Oseen equation.
the ratio of elastic to viscous forces. Note tha{/f = lel/a,
wherelg is a new characteristic length, namely the “visco3.2. Analytical Solution for a Film/Monolayer

elastic” length, defined by In this section, we will concentrate on the situation in whict

Ds(70 + 1) g is not very large. Smatj suggests low elasticity, high surface
> . [14] viscosity of the layer, fast diffusion, and/or small particle size
With foam films stabilized by different surface-active molecule:

Let us definez=r/a. Substitution of Eqgs. [12] and [13] in (see Refs. 10 and 16 and references ther&njay vary from

12, = ———
vel — E

Eq. [8] brings forth 0.005 to 0.02 N/mDs from 1x 1071% to 7x 10~° m%s, and
the surface viscosity from about 1®to 10~2 N s/m (for films
da pow 9o stabilized by proteins, surface viscosity may beaph s/m, see
5z E% 5z Refs. 18 and 19). Thuk, varies between about 10 and 50 mm.
N N One can then realize experimental conditions corresponding
— m<sin¢aﬁ + cosp 9ur _ ﬂg ) -0 g = 1 with particle sizes in this range.
9z z 99 z 15 As we recalled in the Introduction, in the case of an inclusiol
194 9w 196 [15] inside an incompressible film or membrane in a vacuum, th
E% DE + E% convective term in the NS equation cannot be neglected. Wh
5 . the film is compressible, as we will now see, the problem he
_ m<5in¢aﬂ | C0sp 9U; | cosp Ur> —o an analytical solution even fon=0, i.e., when the convective
0z z 9¢ z acceleration term in the NS equation vanishes. The system

) _ o _ differential equations to be solved is
Equation [15] is the scaled NS equation in Oseen’s approxima-

tion. The scaled mass balance equation (Eqg. [7] ) reads 0@ pow 96 0
. 9z zop 9z
§— AT =0 16 [17]
*Tq°e [16] Log o 105 _
. Z3¢ Pz T2 ap
In Eq. [16], As is the Laplace surfagevoperatmsF is defined
throughAsI" = [(np + ns)/a%E]VIoAgl . Eliminating the divergence provides an equation for the vorticity
3. SOLUTION TO THE PROBLEM 19 ( 0w 1%
-—(z— —— =0, [18]
z9z\ 9z 22 9¢?
In real systemsm is usually very small compared to unity,
which incites us to neglect the inertial term in the NS equatiaphose solution is
(Eq. [15]). In the case of an incompressible film (infinkEg,
this approximation results in Oseen’s paradox, as we already . A
. . W = — COSp, [19]
mentioned.p is <1. If we assume thaip < ns, as reported z
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A’ being an arbitrary constant. Correspondingly, the equatiandB are determined as
for the divergence is obtained from Egs. [6], [16], and [17]:
2K1(/a) B 2,9 [29]

vi A= Akl P TRtV
2o +7 @2+ i =0 [20] 4oV oW
Here Ko is the modified Bessel function of zeroth order. Finally,
The solution of Eq. [20] can be put as the explicit expressions fdR(z) and ®(z) are
a = BK 2)sing, 21 1 2
& = BKy(/q2)sing 20 ey iy
2 /qKo(,/Q)
whereK is the modified Bessel function of first ord&is a con-
stant to be determined from the boundary conditions (Eq. [9]). x [ﬁKo(ﬁz) + Ki(/42 — Kl(;/q)} [30]
The geometry of the problem (see Eqg. [8] and the linearized z z
boundary conditions [9] and [10]) allows us to decouple zhe 1 2 K K 7
and¢ components in the velocity field according to P(2) = B + JaK (ﬁ)[ 1(23/@ — 1(;/ﬁ )]. [31]
0
Ur =sing R(z), 0, = cosp &(2). [22]

This result, combined with Eq. [22], gives the flow field every-
where in the film.

The general form of the drag force exerted on the movin
particle by the surrounding layer is a superposition of two term:

From Egs. [11], [19], [21], and [22] we obtain

BKi(/q2) = }i(z R — 9 a viscous one and an elastic ofe= Fisc + Fe. The viscous
z9z z 23 contribution may be obtained by integration of the tangentie
P [23] part of the surface viscosity tensdr,(see Eq. [5]), along the
A= a—(zcb) -R friction contour. We find
z
K
In terms of the function®k and ®, the boundary conditions Fuisc = 27V (np + ns)m. [32]
become Ko(v/a)
The elastic or “Marangoni” part of the drag force is given b
RI1)=1 o(1)=1 atz=1 [24] gonrp g given by
R(z) —— 0, &(z27—— 0. [25] 2z
e e Fo= — / (o0 —op)sinpade| . [33]
=1
The constan®y’ is determined from the condition for zero ve- 0 ’

locity at infinity: A’=0. This result, combined with Eq. [19],
shows that the vorticity is zeran(= 0), which implies that we
have a nonrotational (potential) motion.

Elimination of Rin Eq. [23] yields an equation fab:

In Eq. [33],00 is the film surface tension at equilibriund & 0).

o — op as a function ofp and z can be readily found from
Egs. [17], [21], and [29] (details are given in Appendix B). We
find

P> _9d

22— 43 =

— Ea?Vv
> 35 = BKi(/a2). [26]

Fe=2 .
el TT D«

[34]
The solution fo@ Isa guperposm_on ofthe _solutlon tothe homo"I'hus, the final expression for the drag force for a particle floatin
geneous equatiorA/z=, where A is an arbitrary constant, and

any partial solution to Eq. [26], e.gB{q2)K1(,/q2). Thus, the across a viscous layer is
resulting expressions fdR(z) and®(z) are

K
F =27V + ns)[—ﬁ 2SI q]. [35]
A Bd Ko(/a)
R@) =~ + & 3,[Ki(v/a2)] [27]
q Basically, this result holds for a particle across an interfacic
A B viscoelastic layer characterized by, e, + ns andq. In the
d(2)= -+ —K . 28 : ! !
@ 22 + qz 1(vVa?) [28] case of a particle across a soap film, with two such layers, v

expect the friction force to be just twice that given by Eq. [35
From the boundary conditions [24] and [25], the constahts (see Appendix A for arguments).
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elasticity and coupling to outer fluids are taken into account. A
this theory is not available, all what we can do is to compare th
friction force given by Eq. [35] to that of Saffman, Eq. [1]. If we
find that the former is much larger than the latter, that means th
the membrane elasticity is more important than the viscosity ¢
the bulk fluids in determining the particle friction. If this is so,
our model is relevant.

y has a Saffman limitys (given by Eq. [1]), and a viscoelastic
limit, el (given by Eg. [35]). We slightly simplify the discus-
sion by supposingp = ns; then the reduced coefficient reads
y =y /(4rns) . The reduced Saffman coefficiemt, is a func-

) ] tion of a/ls. Similarly, ye is a function ofa/lye, Wherelye,
-3 -2 -1 0 1 2 the viscoelastic length, is given by Eq. [14]. Both functions ar
In(a/l,,;) shownin Fig. 3, inlog—log representation. The graph in Fig. 3a i

FIG.2. Log-log plot of the reduced viscoelastic coefficienty, as a func- based on the theory of Hughesal. (3), in order to include both
tion of a/lver. The solid line shows the exact solution, Eq. [35]. The dashed linéB€ @ < Is regime (Eq. [1]) and the large size regime |s).
represent the asymptotic expressions for small (Eq. [36]) and large (Eq. [3€pmparingys and e is just a matter of superposing the two
values ofa/lver. graphs. In the superposition, the graph of Fig. 3a has to be mov

to the left ifl e > Is, and to the right in the opposite case. With

The friction coefficients in Oseen’s and Saffman’s formulais procedure, we immediately see thai > ys whenlye <ls,
are given as functions of the reduced lengifis anda/ls, re- Whatever the particle size. In this situation, the particle fric
spectively. Similarly, our result, Eq. [35], can be expressed #en is primarily influenced by the membrane viscoelasticity
a function of .,/ =a/lvel, Wherelyg is the length defined by Conversely, whethe > s, we find two regimes, separated by
Eq. [14]. As examples of how either small or large valueg of
can be found with real systems, corresponding to edh&t e

2
111(}7 vel )

or a>>lye, it is useful to derive asymptotic forms of Eq. [35]. a 3 § /
Using known asymptotic expansions of tigandK; functions : /
(20), we find 2 /
In(7s) -/
Fe2vo+i(a+va-g) 139 P
0/ ..... ..................
for “large” particles ¢ > 1), and " P -
- ~
C(g/2)—-1 el ,
F=27V(np + ns)(g + m(%ﬁ) [37] 2 4 2 0 2 4
for “small” particles  « 1). In(afls)
Let us define the particle drag coefficiepfe, by F = pyelV
and the dimensionless coefficiente = yel/27 (D + 711s). b 3
Figure 2 showsxe versus,/q=a/lve in log-log representa-
tion. The solid line corresponds to Eq. [35], while the right and L2
left dotted lines correspond to Eqgs. [36] and [37], respectively. (7, )
Fora/lye > 2.9, Eq. [36] is valid to within 5%. This is so with 1
Eq. [37] whenevea/l,¢ < 0.4.
0 ,,,,,,,,,,,,,,,
4. NUMERICAL ANALYSIS AND DISCUSSION -1
We start the discussion with a criticism about the relevance 2
of our model. We supposed that our film was in a “vacuum”, -6 -4 2 0 2 4
while real systems are obviously in contact with 3-d fluids. Itis In(a/l,.,;)

essential to determine whether neglecting the coupling to the 3'gIG. 3. (a)Log-log plotofthe reduced Saffman coefficignt,as a function

fluids is legitimate or not. This question can be answered in the,/|s: calculations are based on the theory of Hugtiesl. (3). (b) Log—log
most general way only from the general theory, where both filpiot of the reduced viscoelastic coefficiepter, as a function of/lye.
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a crossover particle sizag, = Iﬁel/ls. If the particle is “small”,

a < aco, the friction is of the Saffman type, i.e., mostly due to the 1.5 .= 5.10"m?s

coupling to the 3-d fluids. 1& > a., the viscoelasticity mech- )

anism dominates (provided that the surface Peclet number re- d

mains small, as we explained). 10 .’
Let us now illustrate these considerations on examples of g

real systems. Literature data on foam films (or monolayers) ; e

(18, 19, 21) give 10® < s < 103 N's/m, 5x 103 < E <2 x o g

1072 N/m, 1x 1071% < Dg < 7 x 10~°m?/s. These films usually 0.5

are in air, the viscosity of which is about210~° N s/n2. We

thus find 108 < le < )1/(T4 m and 10° <Ig < 10° m, roughly.

It is then clear thak, < |s, which means that our description, B

. L . 0.0 =
based on viscoelasticity, is relevant for foam films. 0

Henceforth, we investigated the influence of the different fac- ) )
tors governing the hydrodynamical resistance experienced by particle radius, um
the particle. The range of values for the parameters in the modeG. s. Effect of surface diffusion on hydrodynamical resistance. Calcula
is wide depending on the type of the surfactant stabilizing thiens are performed fd€ = 0.02 N/m,ijp = s =2 x 104 N s/m. The solid line
film, its chemical structure, and its concentration (18, 19, 21, 2gyresponds to the calculated valueyofor Ds=5 x 10~ m?/s; the dashed
(see also (16)). The shear and the dilational viscosities enter [fs for Ds=1> 10" m’/s; the dotted line is foDs = 5 x 10°* m?/s.
expression for the drag force as a sum. Thus, the effects of each
of them cannot be discussed separately. For many systems, the
data reported in the literature demonstrate that the two pargpoerted in (18). For layers of phospholipid®s can be on the
eters are of the same order of magnitude. Only for biologicatder of 1612 m?/s as indicated in (22—24). In Fig. Bs is var-
membranes may they exhibit a difference of several ordersiefl between 5 1071° and 5x 10~° m?/s. Obviously, for low
magnitude (usually the shear viscosity is the larger one). Thalues ofDs, the motion of the particle will be hindered by the
effect of the layer viscosity on is presented in Fig. 4, whege low mobility of the molecules composing the layer, as Fig. °
is displayed as a function of the particle radiasfor different demonstrates.
surface viscosities. As one can expect, the larger the viscosityFigures 4 and 5 showed the influences of the viscosity and st
the higher the drag coefficient. face diffusivity, considered as independent parameters. In re

The effect of the surface diffusion coefficient is illustrated isystemsyp, s, Ds andE do not vary independently. The usual
Fig. 5. Indirect experimental approaches provide estimates #xXperimental variable is the surface area per surfactant molect
Ds on the order of 16° m?/s and even 16 m?/s for films sta- A=1/T". We do not know of experimental data simultaneousl
bilized by fatty acids (10). Low values fdDs are found with giving the values ofiyp, ns, Ds, and E as a function ofA.
films stabilized by mixtures of surfactant and proteins as re-
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FIG. 6. Dependence of the resistance coefficient on the scaled surface a
FIG. 4. Effect of surface viscosity on hydrodynamical resistance. Calcul@er molecule A/A™, for different particle sizes. The solid line corresponds to

tions are done foDs=10"° m?/s andE =0.02 N/m. The dashed line repre- a=0.3m, the dashed line a=0.5,.m, and the dotted line @=1 um. The
sents the drag coefficient, for np =ns=2 x 10~2 N s/m; the dotted line is surface viscosity dependence on adsorption is taken from experimental d.
for 2 x 10~* N s/m. The lowest curve (solid line) corresponds to the results foeported in (25). Elasticity is estimated according to the Langmuir isothern
the elastic or “Marangoni” part of the drag coefficiept;, (Fei = yelV). Calculations are done fdds=1 x 10~ m?/s.
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Nevertheless, we tentatively estimated the variatiop wérsus derivative is zero, and one may write

Ain the case of arachidic acid films, for which am + ns, A)

graph is available (25). We supposed tHatfollowed the d?v

Langmuir equationE =kgTT'/(1 — '/ T's,), Wherekg T is the —ViP+ ”d—§2 =0, [Al]
thermal energy antl, is the surface concentration correspond-

ing to full packing (A™ =1/ I'o, = 20 A%/molecule).Ds does whereV, P is the lateral local pressure gradientis the bulk
not vary very much withA. We took Ds to be constant, with no viscosity of the fluid,v; is the lateral component of the fluid
better reason than simplicity. Doing so, we arrived at the curvgsiocity, and is the normal coordinate. Solving Eq. [A1] pro-
displayed in Fig. 6 for three different particle sizes. As one migkyitdes

expecty monotonically decreases whérincreases. Neverthe-

less, the curves slightly bend up around an intermediate value 1 5 h 2

of A. This feature is caused by an anomaly in the total viscosity V)= ZVH P[i - <§> ] +u, [AZ]
(t0r), Which, according to Ref. (25), reaches a maximum not at

full packing but atA™ = 25 A?/molecule. Note that the anomaly

is more visible with small particles than with large ones. whereh is the film thickness and is the surface velocity as

defined in Eq. [4]. Correspondingly, for the pressure jump terr
one finds

5. CONCLUSIONS (P).n = Ev” P [A3]
2

We compute the drag force felt by a particle moving along
a surfactant film. We considered compressible films, in whidan the other hand, for a flat surface we have a constant presst
the surfactant surface concentration is locally modified by tH&= constTherefore, we findP) - n =0, and using Eq. [4] is ap-
particle motion. In our model, the film properties were defingfopriate. Atthe same time, for sm&numbers, the surfactant
by a compression modulug, surface viscositiego andys, and concentration profile in the bulk phase may be regarded as inc
a surfactant difusion coefficienBs. We calculated the particle Pendent of , the coordinate normal to the interface (see, e.g
drag coefficienty, in the limit when coupling to the bulk fluids Ref. 10). The latter assumption implies that the contribution t
on both sides on the film is negligible. We found thatvould the diffusion flux of surfactant from the bulk phase may alsc
take on finite values, provided thatis finite. be neglected. The only difference to be accounted for, when
This result is in contrast with that given by Saffman’s theorparticle trapped in a film is discussed, compared to the syste
(1-3) for incompressible films, in which coupling to the bullef a particle floating on a monolayer at the air/water interface
fluids is essential. is that the value obtained for the drag force and, correspon
We discussed the relevance of our model in the general sitdgly. the friction coefficient is to be doubled, thus introducing
ation, in which both surface elasticity and coupling to the outée contributions from the two surfaces of the film.
fluids are present. We found that elasticity was essential when-
ever the viscoelastic length, defined by Eq. [14], was smaller )
than Saffman’s viscous length. In practice, this kind of situationAPPEI\IDIX B: INSII;IUT%C;S;GT II:{(])SR%IEBS ELASTICITY
might exist, for instance, with foam films in air. Thus, the theory

is open to experimental check with real systems. The elastic component of the drag force can be expressed ¢

[B1]

2
APPENDIX A: DISCUSSION ON THE MODEL EQUATIONS Foi= — / (o — og)sing ad ¢
z=1
0

At any interface between two contiguous bulk phases, one al-
ways has a“jump” in the generic tensor fields. The pressure jump ) )
which is to appear when crossing, for example, an air/water €€ 00 i the surface tension of the unperturbed surface ar
terface would bring in the equation for the momentum transpditisfies the expansion
(Eq. [4]) an additional term, i.e(P) - n, whereP is the pressure
tensor gndw i_s the unit normal to the surface (on each Sl_Jrface N — (3_0)(F —Ty). [B2]
of the film, Fig. 1a, or at the monolayer surface, Fig. dbs ar’
pointing out to the air phase). The general approach to estimate
this term for a thin liquid film is to employ the lubrication ap-Therefore, to obtain an explicit expression f&y, one needs to
proximation, provided that the film thickness is much smallesolve the equation for the surface mass density [7]. For simpli
than the particle size and that the motion is characterized by with I'" we will denote the perturbation to the layer surface
a low Reynolds number. This implies that the normal pressulensity (" =TI'o—I") caused by the particle motion. Introducing
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it into Eq. [7] and substituting the expression found dofirém
Egs. [21] and [29] yields

1.

I’ 192T" 2V K
1o (007 19T 2lovayqg l(“/ﬁz)sin¢> =0. 2
z9z\ 9z z2 9¢? Ds Ko(,/Q) 3.

(B3]
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