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Adhering vesicles with osmotically stabilized volume are studied with Monte Carlo simulations and optical microscopy.
The simulations are used to determine the dependence of the adhesion area on the vesicle volume, the surface area,
the bending rigidity, the adhesion energy per membrane area, and the adhesion potential range. The simulation results
lead to a simple functional expression that is supplemented by a correction term for gravity effects. The obtained
equation provides a new tool to analyze optical microscopy data and, thus, to measure the adhesion energy per area
by analyzing the geometry of the adhering vesicle. The method can be applied in the weak and ultra-weak adhesion
regime, where the adhesion energy per area is below 10-6 J/m2. By comparing the shapes of adhering vesicles with
different reduced volumes, the bending rigidity can be estimated as well. The new approach is applied to experimental
data for lipid vesicles on (i) an untreated and (ii) a monolayer-coated glass surface, providing ultra-weak and weak
adhesion strength, respectively.

Introduction

All forms of life are based on the principle of screening small
spatial regions from the chemical conditions of the surrounding.1

Living cells are enclosed by a lipid membrane that is impermeable
for most larger molecules. On the other hand, lipid membranes
can be penetrated by water molecules and due to their fluidity
they can adapt to steric constraints imposed by the environment.2

Many mechanical and chemical membrane properties can also
be studied on vesicles, which solely consist of a closed lipid
membrane. In spite of their comparably simple composition,
vesicles allow the study of phenomena like budding transitions,3,4

fusion,5 and fission.6

The adhesion behavior of cells and vesicles is of great relevance
for a fundamental understanding of cell interaction as well as for
biotechnological applications like implantation materials7 or
biosensors8 in which cells are in contact with electrodes. In many
cases it is important or even essential to know the adhesion
energy per membrane areaW between vesicle and substrate.
There are only a few experimental methods to measureW. For
vesicles aspirated by a micropipet, the adhesion energy can be
extracted from the relation between the suction pressure and the
corresponding adhesion area.9,10Since the mechanical treatment
may cause a damage on the vesicle that hinders subsequent
investigations, purely optical measurement techniques are
preferable. Bernard et al. have used phase contrast microscopy
in combination with evanescence wave-induced fluorescence

microscopy to study the adhesion process of a vesicle and
extractedWfrom the spreading dynamics of the adhesion zone.11

The method requires an observation starting from a non-
equilibrium configuration of the adhering vesicle, which is
typically rather difficult to prepare. The analysis of the measure-
ments is based on a theory for the wetting behavior of liquid
droplets. The assumption of a spherical cap geometry restricts
the method to large adhesion strengths, where the bending rigidity
is negligible.

In a different approach, Lai et al. used cross-polarizer and
reflectance interference microscopy to measure the adhesion area
radius and the mid-plane diameter of an equilibrated vesicle
adhering to a pure glass substrate.12 The pure glass surface
provides a weak adhesion so that the bending rigidity is relevant
and the shape of the vesicle deviates significantly from that of
a spherical cap.13 Ignoring this discrepancies, one can apply an
elasticity theory for spherical cap geometries to extract an estimate
of the adhesion strength.12

The adhesion strength can roughly be divided into two
regimes:10 In the strong adhesion regime (W > 10-6 J/m2),
bending rigidity is negligible and the vesicle has the shape of
a spherical cap, which is basically determined by the membrane
area and the volume of the vesicle. In the weak adhesion regime
(W< 10-6J/m2), the shape of the vesicle results from the interplay
between adhesion and bending energy. Therefore, in the weak
adhesion regime, adhesion strength and bending rigidity can be
extracted from an analysis of the vesicle shape. In many
experiments the vesicle adheres to an untreated, pure glass
substrate. As shown in Figure 1a, the shape is far from a spherical
cap geometry, indicating a low adhesion strength. The contact
radiusRc, which is the radius of the vesicle contour close to the
adhesion zone, is roughly of the order of 3µm. If the bending
rigidity κ is known, a first estimate of the adhesion strength can
be made by using the relationW ) κ/(2Rc

2), which has been
derived for vesicles adhering to a contact potential.13 With κ )
10T, whereT is the thermal energy, including the Boltzmann
constantkB, we find that the adhesion strength for a vesicle and
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a pure glass substrate is of the order ofW = 10-9-10-8 J/m2

and lies in the range of ultra-weak adhesion.
In this paper we present relations between geometrical and

material properties of adhering vesicles, which are obtained from
Monte Carlo simulations and analytical estimates. The derived
equations can be used to analyze optical microscopy images in
order to obtain the adhesion strengthW. The method can be used
for weak and ultra-weak adhesion strengths. Especially for ultra-
weak adhesion strength, our method avoids the systematic errors
arising from the assumption of a spherical cap geometry. The
required experimental effort of our new method is comparably
small. In a first set of experimental measurements, the new method
provides reasonable results for weak and ultra-weak adhesion
strengths.

In many experiments, the mass density inside the vesicle differs
from that outside, which provides an effective adhesion strength
modified by gravity effects. We present a correction term for
these latter effects, which is typically neglected in adhesion
strength measurements and turns out to be important for the case
of ultra-weak adhesion. By comparing the shapes of adhering
vesicles with different volumes, the bending rigidityκ can be
estimated as well.

The new approach is based on a relation between the geometry
and the material properties of an equilibrated adhering vesicle.
For small thermal fluctuations, corresponding to the limit of low
temperatureT, the contour of adhering vesicles is determined by
a set of differential equations that can be solved numerically.13

At finite temperature, Monte Carlo (MC) simulations can be
used to obtain equilibrium properties of adhering vesicles.
Recently, we presented a simulation-based study of the adhesion
of vesicles with variable volume (i.e., which do not experience
any constraint on their volume).14 In general, the volume of
vesicles is influenced by so-called “osmotically active” molecules
inside and outside the vesicle, which are too large to penetrate
the membrane. The case of variable volume, studied in ref 14,
corresponds to the absence of osmotically active molecules. If
the density of osmotically active molecules inside and outside
the vesicle is high, the vesicle volumeV fluctuates only weakly
around an equilibrium volumeV0. Many equilibrium shapes of
adhering vesicles with osmotically controlled volume differ
significantly from the equilibrium shapes of vesicles with
variableV.

Osmotically induced volume stabilization is often applied in
vesicle experiments because it resembles the conditions in
biological cells and it simplifies the shape analysis. In the present

study, the adhesion behavior of thermally fluctuating vesicles
with an osmotically stabilized volume is investigated systemati-
cally for the first time, using a set of 400 extensive MC simulations.
A priori, no assumptions are made about the shape or the symmetry
properties of the vesicle. The observations are used to derive a
functional relation between the adhesion area, the vesicle volume,
the bending rigidity of the membrane, the adhesion strength, and
the adhesion potential range.

In addition, this paper also describes the results of a first set
of experimental observations in which contour images of 17
adhering vesicles have been measured with optical microscopy.
Two types of substrates have been chosen in order to realize
weak and ultra-weak adhesion strength. Images of the adhering
vesicles have been analyzed with the help of the simulation-
based relations (see Figure 1). The analysis provides values for
the adhesion strengths and an estimate of the bending rigidity.

Geometric Membrane Model

The simulations are based on the geometric membrane model
discussed in ref 13. We assume that the spontaneous curvature
M0 is negligibly small and that the Gaussian curvature is not
relevant since the vesicle does not change its topology. Then the
elastic curvature energyEel and the adhesion energyEad can be
expressed as:13

whereSVes is the vesicle surface,κ is the bending rigidity, and
M is the local mean curvature. The adhesion potential between
a planar homogeneous substrate and a vesicle is approximated
by a square-well potential, which is defined by its potential range
dand its adhesion energyW> 0 per membrane area. The adhesion
areaAad is defined by those membrane patches that have a
separationl with l < d from the substrate surface.

Since the lipid bilayer is permeable for water molecules, the
volume V of a vesicle can change, while the numberNin of
osmotically active particles inside the vesicle stays constant. For
a sufficiently large concentrationF0 of osmotically active
molecules outside the vesicle, the osmotic energy is given by

withV0 ≡ Nin/F0.
During the simulation, the membrane areaA is kept constant

up to small fluctuations|∆A| < 0.01A , which are necessary to(14) Gruhn, T.; Lipowsky, R.Phys. ReV. E 2005, 71, 011903.

Figure 1. (a) Optical micrographs of two vesicles adhering to a pure glass substrate, which reflects the vesicle shapes. (b) From the large
vesicle we extract the contour, which includes all relevant geometric properties: the total surface area, the reduced volume, and the base
area. Using eq 14, the adhesion strength can be measured. The shown vesicle with a bending rigidityκ = 10T has a reduced volumeV =
0.87 and a reduced adhesion strengthw = 5.8. (c) Typical configuration from a vesicle simulation withV ) 0.9 , w ) 6.1, andκ ) 10T.

Eel + Ead ≡ κ

2∫SVes
dA(2M)2 - WAad (1)

Eos =
F0T

2V0
(V - V0)

2 (2)

5424 Langmuir, Vol. 23, No. 10, 2007 Gruhn et al.



sample the configuration space in an efficient way. Usingκ and
the lengthR≡ xA/4π, we define the dimensionless temperature
and adhesion strength quantities via

and

Furthermore, we also use the dimensionless quantities

Spherical vesicles have radiusRand reduced volumeV ) 1. The
molecular concentrationF0 ) 5× 104 R-3 is chosen small enough
to ensure an adequate sampling of the configuration space. For
the analysis of the simulation data, the measured equilibrium
volumesV are used, which deviate less than 2% fromV0 ≡ 3V0/
(4πR3).

In the MC simulations, the vesicle is represented by a
triangulated model system building a polygon with interconnected
vertices.15 Four hundred simulations with 1.2× 106 MC sweeps
were performed for a vesicle model with 1280 triangles, half of
the sweeps were used for equilibration. Each sweep consists of
1280 tentative vertex moves and 3840 edge flip attempts. A
detailed description of the simulation method is given in ref 14
for vesicles with variable volume.

Simulations were performed systematically for reduced
temperatures 0.025e T̂ e 0.1 and volumes 0.4e V e 0.925;
adhesion strength and potential range were varied in the ranges
5.0 e w e 500.0 and 0.03e d̂ e 0.09.

Parameter Dependence of Reduced Adhesion AreaR. In
a first step, we investigate the temperature dependence ofR, as
defined in eq 7, ifw, κ, d, andV0 are fixed. Considering small
fluctuation modes around the ground state of an adhering vesicle,
it was predicted in ref 14 thatR decreases linearly with increasing
temperatureT. The validity was shown for adhering vesicles
with variable volume. In the new set of simulations, discussed
here, we investigated the adhesion behavior for vesicles with an

osmotically stabilized volume. As shown in Figure 2, the reduced
adhesion areaR is again linear inT so thatR can be written as

with R1 < 0. It is noteworthy that quantities such asκ, A, and
w can depend on temperature as well. In this case, eq 6 and all
other equations are still valid, butR can become a nonlinear
function of T.

A linear extrapolation ofR towardT̂) 0 providesR0 as shown
in Figure 3 ford̂ ) 0.06. It is instructive to compareR0 with the
relative adhesion areaRsc(V,d̂) of an adhering vesicle with a
spherical cap geometry, which is the limiting case for largew.
As shown in the Appendix,Rsc is determined by

where

is the ratio between the circular base areaAba and the total area
A. Figure 4 shows thatR0/Rsc is approximately a linear function
of V. More generally,R0/Rsc can be fitted by a linear expression
in V, w-1/2, andd̂. Similarly, the coefficientR1, as introduced in(15) Gompper, G.; Kroll, D. M.Phys. ReV. Lett. 1994, 73, 2139.

Figure 2. Relative adhesion areaR ) Aad/A of an adhering vesicle
with stabilized volume as a function of the rescaled temperatureT̂
for a rescaled potential ranged̂ ) 0.06. For the adhesion strength
w ) 20 simulation results for reduced volumesV ) 0.41 (4), 0.49
(]), 0.57 (0), 0.65 (3), and 0.73 (O) are shown. Forw ) 6.3 results
are shown forV ) 0.56 ([), 0.7 (9), 0.78 (1), and 0.88 (b). Lines
show solutions of eq 11.

T̂ ≡ T/κ (3)

w ≡ WR2/κ (4)

d̂ ≡ d/R (5)

V ≡ 3V/(4πR3) (6)

R ≡ Aad/A (7)

Figure 3. Relative adhesion areaR0 in the limit of temperatureT
) 0 as a function of the rescaled vesicle volumeV. Values are
extrapolated from results of simulations with a rescaled potential
ranged̂ ) 0.06. Lines show the relative adhesion area of a spherical
capRsc (‚‚‚) and fits ofR0 (s).

Figure 4. Quotient of the relative adhesion areaR0(V̂) in the limit
of temperatureT ) 0 and the corresponding spherical cap value
Rsc(V̂) increases nearly linearly with the rescaled vesicle volumeV.
The symbols correspond to the results shown in Figure 3.

R ≈ R0(V,w,d̂) + T̂R1(V,w,d̂) (8)

Rsc ) Rba + d̂
1 - Rba

2

2V
(9)

Rba ≡ cos(13arccos(1- 2V2)) - 1
2

(10)
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eq 6, can be fitted by a linear combination ofV, V2, w-1/2, and
d̂. As a result, one obtains

with

and

The dependence onw is taken into account by a term proportional
to w-1/2 in analogy to the adhesion behavior of a vesicle with
variable volume.14Equations 9-13 can now be used to determine
the adhesion strength and the bending rigidity for an adhering
vesicle from experimental data.

Extracting Adhesion Strength and Bending Rigidity. If κ

andd̂are known, the adhesion energy per areaWcan be obtained
from eq 11 as

by measuringA, Aad, andV of one adhering vesicle. The largest
contribution to the errorδwarises from the errorδR of measuring
R:

A higher accuracy forw and measurements of other quantities
can be achieved by analyzing the adhesion behavior for various
vesicle volumes. The vesicle volume can be controlled by the
concentrationF0 of osmotically active molecules outside the
vesicle. Alternatively, several adhering vesicles with different
V can be compared. In the following, we refer to the latter method.

We consider two adhering vesicles (1) and (2) with identical
values forW, T, d, andκ. The volume of vesicle (i) is denoted
by V(i) with i ) 1, 2. With

one has

The second equality in eq 17 is a quadratic equation inκ; since
f0, f1, andRsc are linear functions ind, it is also a cubic equation
in d. If neitherd nor κ is known, they can both be obtained by
using eq 17 for three or more vesicles. The solutions found for
d andκ can be inserted into eq 14 to obtainW.

Gravity Effects. Up to now the influence of gravity has been
neglected. However, in many experiments the osmotically active
molecules inside the vesicle are heavier than those outside of it
so that the mass density difference∆Fm > 0 pushes the vesicle
to the bottom substrate. This has two advantages: The different
refraction indices inside and outside the vesicle amplify the
contrast, and the vesicle can be found more easily, since it is
located at the bottom substrate.

For simplicity, we considerd̂) 0 and a spherical cap geometry
for the vesicle. Then, the gravitational energy is given by

with the gravitational accelerationg= 9.81 ms-2. We now assume
thatAad is changed by an amount∆Aad while V is kept constant.
The restriction to spherical caps leads inevitably to a small change
∆A of A, but in most cases∆A/A is distinctly smaller than∆Aad/
Aad. Neglecting∆A, the change ofEg can be written as

with

in analogy with the adhesion energyEad in eq 1. This means, a
small influence of gravitation acts like an extra contributionWg

to the adhesion energy. Consequently, the value forWobtained
from eq 14 is a sum

of the net adhesion energy per areaWad and the gravity
contribution Wg. If vesicles with different values ofA are
compared, eq 17 must be corrected as well and now has the form:

Experimental Section

The approach described above is now applied to adhering giant
vesicles studied by optical microscopy. We explored two adhesion
strength regimes using two different substratesswith weak and with
ultra-weak adhesion strength. In order to realize weak adhesion, we
used the electrostatic interaction between negatively charged vesicles
and positively charged surfaces.16 The ultra-weak adhesion regime
was studied with the same type of vesicles on a pure, untreated glass
surface. The positively charged surfaces were prepared as described
in ref 16. Briefly, glass cover slips were exposed to subsequent
vapor deposition of chromium and gold of 25 nm final thickness.
A self-assembled monolayer of the aminoalkanethiol HS(CH)11NH2

(Dojindo Molecular Technologies, Inc, USA) is formed by immersing
the coated surface in 0.1 mM solution of the aminoalkanethiol for
1 h.17 The surface becomes positively charged in aqueous solution
while the non-coated glass surface is negatively charged. The
negatively charged membranes of the giant vesicles were 9:1 mixtures
of DOPC (dioleoylphosphatidylcholine) and DOPG (dioleoylphos-
phatidylglycerol) from Avanti Polar Lipids. Using the method of
electroformation, the vesicles were grown in 220 mM sucrose solution
and subsequently diluted in isotonic glucose solution resulting in a
mass density difference of about 12.5 g/L. The vesicle solution was
then transferred to an observation chamber, consisting of two glass
cover slips sandwiching aΠ-shaped Teflon spacer. The chamber is
closed by the studied substrate (positively charged or pure untreated
glass surface) that forms the bottom of the chamber. The two cover
slips, sandwiching the Teflon spacer, allow side-view access into
the chamber. The observation was performed with a horizontally
mounted microscope in phase contrast mode. After introducing the
vesicle solution in the chamber, the vesicles are allowed to settle
on the studied surface located at the chamber bottom. Snapshots of

(16) Lipowsky, R.; Brinkmann, M.; Dimova, R.; Franke, T.; Kierfeld, J.; Zhang,
X. J. Phys. Condens. Matter2005, 17, S537.

(17) Zhu, M.; Schneider, M.; Papastavrou, G.; Akari, S.; Mo¨hwald, H.Langmuir
2001, 17, 6471.

R ) Rscf0 + f1T̂ - (Rsc + 1.4T̂)
0.55

xw
(11)

f0 ≡ 0.75+ 0.28V + 0.8d̂ (12)

f1 ≡ -0.8+ 2.2V(1 - V) + 2.5d̂ (13)

WA
4πκ

) w ) (0.55
Rscκ + 1.4T

(Rscf0 - R)κ + f1T)2

(14)

δw
w

j
∂w
∂R

δR
w

) 2xw
0.55(Rsc + 1.4T̂)

δR (15)

Q(i) ≡ (A(i))-1/2
Rsc

(i)
κ + 1.4T

(Rsc
(i) f0

(i) - R(i))κ + f1
(i)T

(16)

x W
1.21πκ

) Q(1) ) Q(2) (17)

Eg ) ∆Fmg∫Vsc
zdV)

∆Fmg

12π
A(A - 2Aad) (18)

∆Eg = -Wg∆Aad (19)

Wg ≡ gA∆Fm

6π
(20)

Weff ) Wad + Wg (21)

Wad

1.21πκ
) (Q(1))2 -

Wg
(1)

1.21πκ
) (Q(2))2 -

Wg
(2)

1.21πκ
(22)
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vesicles of different sizes were taken and their contours determined.
We investigated 10 vesicles on the pure glass substrate, causing
ultra-weak adhesion, and 7 vesicles in contact with the weakly
adhesive substrate.

Adhesion Strength.Applying eq 22 to all pairs of vesicles, optimal
values for〈κ〉 and 〈d〉 are determined numerically for weak and
ultra-weak adhesion strength, respectively. With these values the
effective adhesion energyWeffand the net adhesion energyWadwere
obtained as shown in Figure 5. Even though the data are relatively
scattered, the values for the two different substrates are clearly
localized around two very distinct values ofWeff.

Using eq 15, we can estimate the expected spreading of the data
points. For the ultra-weak adhesion we find thatδWeff/Weffj 12.5δR/
R. If R is measured with an accuracy of(5% , the absolute deviations
of theWeff data from the true value should be smaller than(63%,
which corresponds to the observed spreading of the data points. The
error range for the average value over the 10 values ofWeff should
be smaller by a factor of 1/x10, resulting in〈Weff〉 ) 5.5T µm-2 (
1.1T µm-2. According to eq 15, the error range forWeff with the
weakly adhesive substrate could be four times larger than for the
pure glass substrate. In practice, values ofWefffor the weakly adhesive
substrate spread about(60% around the average value. Taking this
as the standard deviation, the average value for the seven weakly
adhering vesicles is given byWeff ) 61T µm-2 ( 15T µm-2.

The data points obtained forWeff andWg are used to calculateWad

) Weff - Wg. Therefore,Wad is exposed to two additional sources
of error that affectWg. On the one hand, eq 20 is based on the
assumption that the influence of gravity is small, while it turns out
to be comparable to the ultra-weak adhesion strength. On the other
hand, the osmolarity of the external solution may be slightly different
between the observed vesicles. As a general result we find that the
impact of gravity is negligible for vesicles adhering to the oppositely
charged monolayer while it plays an important role for the ultra-
weak adhesion on pure glass.

Only a small number of previous studies have been devoted to
the measurement of vesicle adhesion strength. Since there is a large
number of membrane compositions and substrate materials, it is
difficult to find data sets that are directly comparable. Our
measurements for vesicles adhering to the oppositely charged
monolayer are approximately comparable with experimental results
presented in ref 11. Investigating a vesicle with a negatively charged
egg-phosphatidylcholine membrane adhering to a glass substrate,
coated with a positively charged indium-tin oxide monolayer, they
measured the adhesion strengthW ) 1.4× 10-6 J/m2 , which is a
factor of 4-5 larger than our result for weak adhesion. Considering
the different materials, it is reassuring that both results are
approximately of the same order of magnitude. The same applies
to the adhesion strengthW ) 5 × 10-9 J/m2 that was found in ref

12 for a vesicle with a DMPC membrane, adhering to a pure glass
substrate. Their result is a factor of 2 smaller than the adhesion
strength we found for our DOPC-DOPG vesicles adhering to a
pure glass substrate. Beside the different materials, one should note
that the adhesion energies measured in refs 11 and 12 include effective
contributions from fluctuation-induced repulsion, while in our case
the pure material propertyWad is extracted from the fluctuating
vesicle. The measured values ofW are summarized in Table 1,
including the range of adhesion strengths measured between two
vesicles aspirated by micropipets.10The vesicles, which were studied
in an electrolyte solution, consisted of neutral phosphatidylcholine
(PC) lipids and a small amount of negatively charged phosphati-
dylserine (PS) lipids. Adhesion strengths in the range of 10-8-10-5

J/m2 were achieved by varying the charge density of the lipid
membranes.

Bending Rigidity. By comparing several adhering vesicles with
different volumes, eq 22 provides a new method to estimate the
bending rigidity. In the literature, several methods for measuringκ
can be found. The bending rigidity can be extracted from the thermal
fluctuation spectrum of the vesicle18 or by analyzing a vesicle
aspirated into a micropipet.19,20Furthermore, it can be obtained from
the geometry of thin lipid tethers pulled out of the vesicle

(18) Faucon, J. F.; Mitov, M.D.; Me´léard, P.; Bivas, I.; Bothorel, P.J. Phys.
Fr. 1989, 50, 2389.

(19) Evans, E.; Rawicz, W.Phys. ReV. Lett. 1990, 64, 2094.
(20) Rawicz, W.; Olbrich, K. C.; McIntosh, T.; Needham, D.; Evans, E.Biophys.

J. 2000, 79, 328.

Figure 5. Effective adhesion strengthWeffand net adhesion strength
Wad divided by temperatureT as functions of the rescaled volumeV.
Filled symbols refer to vesicles on a pure glass substrate; open symbols
refer to vesicles on the substrate coated with a positively charged
monolayer. Horizontal lines denote averages over the respective
data points, i.e.,〈Wad〉 (s) and〈Weff〉 (‚‚‚) for membranes on a pure
glass substrate and〈Wad〉 = 〈Weff〉 (- - -) for membranes on the coated
substrate.

Figure 6. Bending rigidityκ divided by temperatureTas a function
of reduced volumeV. Filled symbols refer to vesicles on a pure glass
substrate, showing ultra-weak adhesion. Open symbols refer to
vesicles on a weakly adhesive, coated substrate. Averages〈κ/T〉
over the respective data points are denoted by horizontal lines for
weak (- - -) and ultra-weak adhesion (s). Results measured in ref
24 from flickering modes (-‚-‚-) and electric deformation (‚‚‚) are
shown for comparison.

Figure 7. Spherical cap with heighth, base areaAba, total areaA
) Aba + Asp, potential ranged, and adhesion areaAad ) Aba + Ad.
The spherical cap approximation is used to analyze the limit of
negligible bending rigidity and to estimate gravity impacts on the
adhesion behavior.
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membrane21,22or from the deformation of the vesicle in an external
electrical field.23

We define the quantity

for a pair of adhering vesicles with the same adhesion strength.
According to eq 22,Dij should vanish for the correctκ andd. Let
Nbe the number of vesicles studied for the same adhesion conditions.
We then look for values ofκ andd which minimize the expression

We have applied this method to the sets of adhering vesicles with
weak and ultra-weak adhesion strength, separately. In both cases we
obtained an optimal bending rigidity〈κ〉 ) 10T ( 2T.

In order to get more detailed information, we considered values
κ(i) that minimize the quantityDi ) ∑j)1

N Dij, which predominantly
depends on the properties of vesiclei. In Figure 6, the resulting
values ofκ(i) are shown as a function of the reduced volumeV of
vesiclei. Inspection of this figure reveals a certain tendency forκ
to be more accurate if the reduced volume of the vesicles is large.

The bending rigidity of DOPC has been measured with two
different methods by Niggemann et al.24 From fluctuation mode
spectroscopy a valueκ ) 5.3T ( 0.6T was found for a vesicle with
a radiusR ) 12 µm. For the same vesicle the analysis of the shape
deformations induced by an electric field revealedκ ) 15T ( 1.2T.
As shown in Figure 6, our results forκ obtained for vesicles with
R= 10µm lie clearly between the fluctuation mode and the electric
deformation measurement.

Conclusions

With the help of Monte Carlo simulations, we have found a
relation between the material properties of an adhering vesicle
and geometric quantities that can be determined from the
vesicle contour. Our approach provides a new optical method
to measure the adhesion strength from the equilibrium shape
of the adhering vesicle. This approach takes thermal fluctuations
into account and is not restricted to vesicles with a spherical
cap geometry. A correction term for gravity effects is included.
The method is dedicated to measurements of weak and ultra-
weak adhesion strengths (i.e., for adhesion strengthsW < 10-6

J/m2).
The method is tested for a set of vesicles adhering to substrates

with weak and ultra-weak adhesion strength. Results are of the
same order as those found elsewhere for similar materials. The
error related to individual measurements, which is inherent in
our method (see eq 15), can be overcome by analyzing a larger
number of vesicles, which is facilitated by the comparably low

experimental effort of the method. A comparison of adhering
vesicles with different volumes gives an estimate of the bending
rigidity κ without any additional measurements. It will be
interesting to apply our method to vesicles with cholesterol, which
is known to substantially increase the bending stiffness of lipid
membranes. Work in this direction is in progress.

Appendix: Spherical Cap Geometry

In the following, some geometrical properties of the spherical
cap are analyzed in order to prove eqs 9 and 10, which provide
a relation between the reduced adhesion areaRscand the reduced
volumeV for a vesicle with a spherical cap geometry.

We consider a spherical cap with a volumeV and a surface
areaA that lies on a substrate with its circular base areaAba

(Figure 7). The spherical part of the surfaceAsp ) A - Aba has
a curvature radius denoted withRsp, while the height (i.e., the
smallest diameter) of the spherical cap is calledh. We start from
the following simple geometric relations for a spherical cap:

For an adhesion potential of ranged the adhesion area of the
spherical cap is given by

whereAd is the part ofAsp that is closer to the substrate thand
(see Figure 7). From eq 27 it follows that

where we assume thatd < h. The aim is to express the reduced
adhesion area

as a function of the reduced volume

with R ≡ (A/4π)1/2. For convenience we introduce(21) Bo, L.; Waugh, R.E.Biophys. J.1989, 55, 509.
(22) Cuvelier, D.; Imre Dere´nyi, Bassereau, P.; Nassoy, P.Biophys. J.2005,

88, 2417.
(23) Kummrow, M.; Helfrich, W.Phys. ReV. A 1991, 44, 8356.
(24) Niggemann, G.; Kummrow, M.; Helfrich, W.J. Phys. II Fr.1995, 5, 413.
(25) Dietrich, C.; Angelova, M.; Pouligny, B.J. Phys. II Fr.1997, 7, 1651.

Table 1. Bending Rigidities and Adhesion Energies Per Area

κ/T W [10-9 J/m2] lipid material adhesion material measurement technique

10 10 DOPC:DOPG (9:1) pure glass substrate described in this article
10 300 DOPC:DOPG (9:1) aminoalkanethiol monolayer described in this article

5 DMPC pure glass substrate interference microscopy12

1400 EPC polylysine-coated surface fluorescence microscopy11

10-104 PC:PS (100:0-7) second vesicle (same composition) micropipettes10

106 DMPC latex sphere optical trap25

5.3 DOPC flickering spectroscopy24

15 DOPC electric deformation24

Dij ≡ |(Q(i))2 - (Q(j))2 -
Wg

(i) - Wg
(j)

1.21πκ
| (23)

∑
i)1

N

∑
j)1

N

Dij (24)

A ) 2Aba + πh2 (25)

V ) h
6
(3Aba + πh2) (26)

Asp ) 2πRsph ) Aba + πh2 (27)

Aad ) Aba + Ad (28)

Ad ) 2πRspd ) Asp
d
h

(29)

Rsc ≡ Rba + Rd ≡ Aba

A
+

Ad

A
(30)

V ≡ VVR
-1 ≡ V(43πR3)-1

(31)

q ≡ πh2

A
) h2

4R2
(32)
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so thatV andVR can be rewritten as

andV can be expressed as a function ofq:

From eq 25, it follows that

which provides a relation betweenV andRba:

The cubic equation inRba has the solution

Now an expression forRd is needed:

Multiplying eqs 37 and 46 provides

so thatRsc is given by

Equations 43 and 50 are identical to eqs 10 and 9.

LA063123R

V ) h
12

(6Aba + 2πh2) (33)

) h
12

(3A - πh2) ) hA
12

(3 - q)
(34)

VR ) πh3

6q3/2
(35)

V ) V
VR

) Aqxq

2πh2
(3 - q) (36)

)
(3 - q)xq

2
(37)

Aba ) A - πh2

2
(38)

Rba )
Aba

A
) 1 - q

2
(39)

q ) 1 - 2Rba (40)

V ) (1 - Rba)x1 - 2Rba (41)

V2 ) 1 - 3Rba
2 - 2Rba

3 (42)

Rba ) cos(13arccos(1- 2V2)) - 1
2

(43)

Rd )
Ad

A
)

Asp

A
d
h

)
Aba + πh2

A
d̂R
h

(44)

) (1 - q
2

+ q) d̂h

2hxq
(45)

) d̂
1 + q

4xq
(46)

VRd ) d̂
(3 - q)(1 + q)

8
(47)

) d̂
(2 + 2Rba)(2 - 2Rba)

8
(48)

Rd ) d̂
1 - Rba

2

2V
(49)

Rsc ) Rba + d̂
1 - Rba

2

2V
(50)
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