Anchored polymers or macromolecules induce a prefered or spontaneous curvature in the membrane.
For repulsive polymer/membrane interactions,
the membrane curves away from the polymers.
[1]
[2]
For attractive polymer/membrane interactions, it usually curves towards the polymers.
[3]
Membrane curvature is also induced by non-anchored nanoparticles and colloids.
[4]
[5].
The interactions between membranes and polymers can have rather dramatic
effects as recently observed for lipid vesicles in aqueous solutions of two
water-soluble polymers, dextran and polyethylene glycol (PEG). Deflation of the vesicles
leads to aqueous phase separation within the interior compartments,
and the membranes become exposed to several aqueous phases.
The overall morphology of the vesicles is then determined by the wetting
properties of the membranes.
These properties can be characterized by an
intrinsic contact angle
[6],
which represents a material parameter and can be calculated from the effective
contact angles as measured by optical microscopy.
As one changes the polymer concentration, the system may undergo
a complete-to-partial wetting transition
[7].
In addition, deflation-induced phase separation leads to the formation
of a large number of stable membrane nanotubes
[8],
which reveal spontaneous membrane tensions
[9].
|
|
-
A. H. Bahrami, M. Raatz, J. Agudo-Canalejo, R. Michel, E. M. Curtis, C. K. Hall,
M. Gradzielski, R. Lipowsky, and T. W. Weikl
Wrapping of nanoparticles by membranes.
Adv. Colloid Interface Sci. 208, 214-224 (2014).
-
M. Raatz, R. Lipowsky, and T. W. Weikl
Cooperative wrapping of nanoparticles by membrane tubes.
Soft Matter 10, 3570-3577 (2014).
-
R. Lipowsky
Spontaneous tubulation of membranes and vesicles reveals
membrane tension generated by spontaneous curvature.
Spontaneous tubulation of membranes and vesicles ... - Corrections.
Spontaneous tubulation of membranes ... - Supporting Information.
Faraday Discuss. 161, 305-331 (2013).
-
A. H. Bahrami, R. Lipowsky, and T. Weikl
Tubulation and aggregation of spherical nanoparticles adsorbed on vesicles.
Phys. Rev. Lett. 109, 188102 (2012)
-
R. Dimova and R. Lipowsky
Lipid membranes in contact with aqueous phases of polymer solutions.
Soft Matter 8, 6409-6416 (2012)
-
Yanhong Li, R. Lipowsky, and R. Dimova
Membrane nanotubes induced by aqueous phase separation and
stabilized by spontaneous curvature.
Membrane nanotubes induced by aqueous phase seperation ... - Supporting Information.
PNAS 108, 4731-4736 (2011).
-
H. Kusumaatmaja, Yanhong Li, R. Dimova, and R. Lipowsky
Intrinsic contact angle of aqueous phases at membranes and vesicles.
Phys. Rev. Lett. 103, 238103 (2009).
-
P. Yang, R. Lipowsky, and R. Dimova
Nanoparticle Formation in Giant Vesicles: Synthesis in Biomimetic Compartments.
Small 5, 2033-2037 (2009).
-
B. Rozycki, R. Lipowsky, and T. R. Weikl
Effective surface interactions mediated by adhesive particles.
EPL 84, 26004 (2008).
-
Yanhong Li, R. Lipowsky, and R. Dimova
Transition from complete to partial wetting within membrane
compartments.
Transition from complete to partial wetting ... - Supporting Information.
JACS 130, 12252-12253 (2008).
-
J. Shillcock and R. Lipowsky
Visualizing soft matter: Mesoscopic simulations of membranes, vesicles,
and nanoparticles.
Visualizing soft matter: Vesicle with nanoparticles (Color figure)
Biophys. Rev. Lett. 2, 33 - 55 (2007).
-
V. Nikolov, R. Lipowsky and R. Dimova
Behavior of Giant Vesicles with Anchored DNA Molecules
Biophysical Journal 92, 4356 - 4368 (2007).
-
R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K.A. Riske and R. Lipowsky
A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy.
J. Phys.: Condens. Matter 18, S1151 - S1176 (2006).
-
M. Breidenich, R.R. Netz and R. Lipowsky
The influence of non-anchored polymers on the curvature of vesicles.
Molecular Physics 103, 3169 - 3183 (2005).
-
R. Lipowsky.
Domains and Rafts in Membranes - Hidden Dimensions of
Selforganization.
J. Biological Phys. 28, 195-210 (2002).
-
M. Breidenich, R.R. Netz, and R. Lipowsky
Adsorption of polymers anchored to membranes.
Eur. Phys. J. E 5 , 403-414 (2001).
-
M. Breidenich, R. Netz, and R. Lipowsky.
The shape of polymer-decorated membranes.
Europhys. Lett. 49, 431-437 (2000).
-
R. Lipowsky.
From Membranes to Membrane Machines.
In ''Statistical Mechanics of Biocomplexity'',
ed. by D. Reguera, J.M. Rubi, and J.M.B. Vilar,
''Lecture Notes in Physics'',
Vol. 527, pages 1-23 (Springer, Berlin 1999).
-
H.G. Döbereiner, O. Selchow, and R. Lipowsky.
Spontaneous Curvature of Asymmetric Bilayer Membranes.
Eur. Biophys. J. 28, 174-178 (1999).
-
H. G. Döbereiner, A. Lehmann, W. Goedel, O. Selchow, and
R. Lipowsky.
Membrane curvature induced by sugar and polymer solutions.
In B. Mulder, C. F. Schmidt, and V. Vogel, editors,
''Materials
Science of the Cell'', Vol. 489 of Mat. Res. Soc. Symp. Proc.,
pages 101-106. MRS, Warrendale, Pennsylvania (1998).
-
R. Lipowsky and H.G. Döbereiner.
Vesicles in contact with nanoparticles and colloids.
Europhys. Lett. 43, 219-225 (1998).
-
R. Lipowsky, H.G. Döbereiner, C. Hiergeist, and V.
Indrani.
Membrane curvature induced by polymers and
colloids.
Physica A 249, 536-543 (1998).
-
R. Lipowsky.
Flexible membranes with anchored polymers
Colloids and Surfaces A 128, 255-264 (1997).
-
C. Hiergeist, V.A. Indrani, and R. Lipowsky.
Membranes with anchored polymers at the adsorption transition.
Europhys. Lett. 36, 491-496 (1996).
-
C. Hiergeist and R. Lipowsky.
Elastic properties of polymer-decorated membranes.
J. Phys. France 6 , 1465-1481 (1996).
-
R. Lipowsky.
Kooperatives Verhalten von Membranen
Phys. Bl. 52 , 555-560 (1996).
-
R. Lipowsky.
The morphology of lipid membranes.
Current Opinion in Structural Biology 5 , 531-540 (1995).
-
R. Lipowsky.
Bending of membranes by anchored polymers
Europhys. Lett. 30 , 197-202 (1995).