Wetting layers at chemically structured surfaces undergo
morphological transitions.
[1]
[2]
[3]
Such transitions also occur at topographically structured surfaces.
[4]
These transitions represent bifurcations in shape space,
and reflect the freedom of contact angles at pinned contact lines.
[5]
For mobile contact lines, on the other hand, the contact angles depend on the line tension
and its spatial variation.
[6]
Two recent reviews are
[5] and
[7].
|
|
-
H. Kusumaatmaja, R. Lipowsky, C. Jin, R.-C. Mutihac, and H. Riegler
Nonisomorphic nucleation pathways arising from morphological
transitions of liquid channels.
Phys. Rev. Lett. 108, 126102 (2012).
-
H. Kusumaatmaja and R. Lipowsky
Equilibrium Morphologies and Effective Spring Constants of Capillary Bridges.
Langmuir 26, 18734-18741 (2010).
-
C. Schäfle, M. Brinkmann, C. Bechinger, P. Leiderer, and R. Lipowsky
Morphological wetting transitions at ring-shaped surface domains.
Langmuir 26, 11878-11885 (2010).
-
P. Blecua, M. Brinkmann, R. Lipowsky, and J. Kierfeld
Morphological Transitions of Liquid Droplets on Circular Surface Domains.
Morphological Transitions of Liquid Droplets ... - Supporting information.
Langmuir 25, 13493-13502 (2009)
-
P. Blecua, R. Lipowsky and J. Kierfeld
Line Tension Effects for Liquid Droplets on Circular Surface Domains.
Langmuir 22, 11041 - 11059 (2006).
-
R. Lipowsky, M. Brinkmann, R. Dimova, C. Haluska, J. Kierfeld and J. Shillcock
Wetting, budding, and fusion - morphological transitions of soft surfaces.
J. Phys.: Condens. Matter 17, S2885 - S2902 (2005).
-
M. Brinkmann, J. Kierfeld and R. Lipowsky
Stability of liquid channels or filaments in the presence of line tension.
J. Phys. Condensed Matter 17, 2349 - 2364, (2005).
-
R. Lipowsky, M. Brinkmann, R. Dimova, T. Franke, J. Kierfeld and X. Zhang
Droplets, bubbles, and vesicles at chemically structured surfaces.
J. Phys.: Condens. Matter 17, S537-S558, (2005).
-
R. Seemann, M. Brinkmann, E.J. Kramer, F.F. Lange and R. Lipowsky
Wetting morphologies at microstructured surfaces.
Wetting morphologies at microstructured surfaces - Supporting information.
PNAS 102, 1848-1852, (2005).
-
M. Brinkmann, J. Kierfeld and R. Lipowsky
A general stability criterion for droplets on structured substrates.
J. Phys. A: Math. Gen. 37, 11547 - 11573 (2004).
-
A. Valencia and R. Lipowsky.
Nucleation through a double barrier on a chemically patterned
substrate.
Langmuir 20, 1986-1996 (2004).
-
M. Brinkmann and R. Lipowsky
Wetting morphologies on substrates with striped surface domains.
J. Appl. Phys. 92, 4296-4306 (2002).
-
P. Lenz, C. Bechinger, C. Schäfle, P. Leiderer, and R. Lipowsky.
Perforated wetting layers from periodic patterns of lyophobic
surface domains.
Langmuir, 17, 7814-7822 (2001).
-
R. Lipowsky.
Morphological wetting transitions at chemically structured surfaces.
Current Opinion Colloid Interface Sci. 6 , 40-48 (2001).
-
A. Valencia, M. Brinkmann, and R. Lipowsky.
Liquid Bridges in Chemically Structured Slit Pores.
Langmuir 17 , 3390-3399 (2001).
-
R. Lipowsky.
Structured Surfaces and Morphological Wetting Transitions.
Interface Science 9 , 105-115 (2001).
-
P. Lenz, W. Fenzl, and R. Lipowsky.
Wetting of ring-shaped surface domains.
Europhys. Lett. 53 , 618- 624 (2001).
-
R. Lipowsky, P. Lenz, and P. Swain.
Wetting and Dewetting of Structured or Imprinted
Surfaces.
Colloids and Surfaces A 161, 3-22 (2000).
-
P. Swain and R. Lipowsky.
Wetting between structured surfaces: liquid bridges and induced
forces.
Europhys. Lett. 49, 203-209 (2000).
-
P. Lenz and R. Lipowsky.
Stability of droplets on homogeneous and structured surfaces.
Eur. Phys. J. E 1, 249-262 (2000).
-
H. Gau, S. Herminghaus, P. Lenz, and R. Lipowsky.
Liquid Morphologies on Structured Surfaces:
From Microchannels to Microchips.
Science 283, 46-49 (1999).
-
P. Swain and R. Lipowsky.
Contact angles on structured surfaces: a new look at Cassie's and
Wenzel's laws.
Langmuir 14, 6772-6780 (1998).
-
P. Lenz and R. Lipowsky.
Morphological transitions of wetting layers on structured
surfaces.
Phys. Rev. Lett. 80, 1920-1923 (1998).