Fuchs, P. F. J.; Javanainen, M.; Lamberg, A.; Miettinen, M. S.; Monticelli, L.; Maatta, J.; Ollila, O. H. S.; Retegan, M.; Santuz, H.: Open collaboration that uses NMR data to judge the correctness of phospholipid glycerol and head group structures in molecular dynamics simulations. Biophysical Journal 108 (2), p. 411A - 411A (2015)
Gerling, U. I. M.; Miettinen, M. S.; Koksch, B.: Concluding the amyloid formation pathway of a coiled-coil-based peptide from the size of the critical nucleus. ChemPhysChem 16 (1), pp. 108 - 114 (2015)
Roethlein, C.; Miettinen, M. S.; Ignatova, Z.: A flexible approach to assess fluorescence decay functions in complex energy transfer systems. BMC Biophysics 8, 5 (2015)
Miettinen, M. S.; Monticelli, L.; Nedumpully-Govindan, P.; Knecht, V.; Ignatova, Z.: Stable polyglutamine dimers can contain β-hairpins with interdigitated side chains but not α-helices, β-nanotubes, β-pseudohelices, or steric zippers. Biophysical Journal 106 (8), pp. 1721 - 1728 (2014)
Javanainen, M.; Hammaren, H.; Monticelli, L.; Jeon, J.-H.; Miettinen, M. S.; Martinez-Seara, H.; Metzler, R.; Vattulainen, I.: Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discussions 161, pp. 397 - 417 (2013)
Miettinen, M. S.; Knecht, V.; Monticelli, L.; Ignatova, Z.: Assessing polyglutamine conformation in the nucleating event by molecular dynamics simulations. The Journal of Physical Chemistry B 116 (34), pp. 10259 - 10265 (2012)
Miettinen, M. S.; Knecht, V.; Monticelli, L.; Ignatova, Z.: Assessing polyglutamine conformation in the nucleating event by molecular dynamics simulations. The Journal of Physical Chemistry B 116 (34), pp. 10259 - 10265 (2012)
Wong-ekkabut, J.; Miettinen, M. S.; Dias, C.; Karttunen, M.: Static charges cannot drive a continuous flow of water molecules through a carbon nanotube. Nature Nanotechnology 5 (8), pp. 555 - 557 (2010)
Niemela, P. S.; Miettinen, M. S.; Monticelli, L.; Hammaren, H.; Bjelkmar, P.; Murtola, T.; Lindahl, E.; Vattulainen, I.: Membrane proteins diffuse as dynamic complexes with lipids. Journal of the American Chemical Society 132 (22), pp. 7574 - 7575 (2010)
Miettinen, M. S.; Gurtovenko, A. A.; Vattulainen, I.; Karttunen, M.: Ion dynamics in cationic lipid bilayer systems in saline solutions. The Journal of Physical Chemistry B 113 (27), pp. 9226 - 9234 (2009)
Gurtovenko, A. A.; Miettinen, M. S.; Karttunen, M.; Vattulainen, I.: Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations. The Journal of Physical Chemistry B 109 (44), pp. 21126 - 21134 (2005)
Miettinen, M. S.: Refined molecular dynamics simulations of phospholipid bilayers. In: Advances in Biomembranes and Lipid Self-Assembly, Vol. 30, pp. 1 - 38 (2019)
Laine, H.; Lahti, L.; Lehto, A.; Ollila, S.; Miettinen, M. S.: Beyond open access: the changing culture of producing and disseminating scientific knowledge. In: Proceedings of the 19th International Academic Mindtrek Conference, pp. 202 - 205. Association for Computing Machinery, Tampere, Finland (2015)
Antila, H.; Miettinen, M. S.: Data-driven development of lipid force fields for molecular dynamics simulations. In Biophysical Journal, 118 (3, Supplement 1), pp. 141a - 142a. Cell Press, Cambridge, Mass. (2020)
Schullian, O.; Lipowsky, R.; Miettinen, M. S.: Formally correct solutions to local stress equation can be non-physical. In Biophysical Journal, 118 (3, Supplement 1), p. 89a. Cell Press, Cambridge, Mass. (2020)
Challenge: It's not just whether a membrane is in a "solid" or "liquid" state that matters—how tightly its molecules are packed also influences how protein-rich droplets (condensates) stick to it Finding: More tightly packed membranes push away condensates, while loosely packed ones attract them Impact: Understanding these interactions is key to grasping essential cellular functions and disease progression
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.