Paschalis, E. P.; Gamsjaeger, S.; Fratzl-Zelman, N.; Roschger, P.; Masic, A.; Brozek, W.; Hassler, N.; Glorieux, F. H.; Rauch, F.; Klaushofer, K.et al.; Fratzl, P.: Evidence for a role for nanoporosity and pyridinoline content in human mild osteogenesis imperfecta. Journal of Bone and Mineral Research 31 (5), pp. 1050 - 1059 (2016)
Akiva, A.; Malkinson, G.; Masic, A.; Kerschnitzki, M.; Bennet, M.; Fratzl, P.; Addadi, L.; Weiner, S.; Yaniv, K.: On the pathway of mineral deposition in larval zebrafish caudal fin bone. Bone 75, pp. 192 - 200 (2015)
Atkins, A.; Reznikov, N.; Ofer, L.; Masic, A.; Weiner, S.; Shahar, R.: The three-dimensional structure of anosteocytic lamellated bone of fish. Acta Biomaterialia 13, pp. 311 - 323 (2015)
Cui, Q.; Xia, B.; Mitzscherling, S.; Masic, A.; Li, L.; Bargheer, M.; Möhwald, H.: Preparation of gold nanostars and their study in selective catalytic reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 465, pp. 20 - 25 (2015)
Guggolz, T.; Henne, S.; Politi, Y.; Schütz, R.; Mašić, A.; Müller, C. H. G.; Meißner, K.: Histochemical evidence of β-chitin in parapodial glandular organs and tubes of Spiophanes (Annelida, Sedentaria: Spionidae), and first studies on selected Annelida. Journal of Morphology 276 (12), pp. 1433 - 1447 (2015)
Kim, B. J.; Kim, S.; Oh, D. X.; Masic, A.; Cha, H. J.; Hwang, D. S.: Mussel-inspired adhesive protein-based electrospun nanofibers reinforced by Fe(III)-DOPA complexation. Journal of Materials Chemistry B 3 (1), pp. 112 - 118 (2015)
Masic, A.; Weaver, J. C.: Large area sub-micron chemical imaging of magnesium in sea urchin teeth. Journal of Structural Biology 189 (3), pp. 269 - 275 (2015)
Schmitt, C. N. Z.; Winter, A.; Bertinetti, L.; Masic, A.; Strauch, P.; Harrington, M. J.: Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation. Journal of the Royal Society Interface 12 (110), 20150466 (2015)
Stetciura, I. Y.; Yashchenok, A. M.; Masic, A.; Lyubin, E. V.; Inozemtseva, O. A.; Drozdova, M. G.; Markvichova, E. A.; Khlebtsov, B. N.; Fedyanin, A. A.; Sukhorukov, G. B.et al.; Gorin, D. A.; Volodkin, D.: Composite SERS-based satellites navigated by optical tweezers for single cell analysis. Analyst 140 (15), pp. 4981 - 4986 (2015)
Tadayon, M.; Amini, S.; Masic, A.; Miserez, a. A.: The mantis shrimp saddle: a biological spring combining stiffness and flexibility. Advanced Functional Materials 25 (41), pp. 6437 - 6447 (2015)
Vacogne, C. D.; Brosnan, S. M.; Masic, A.; Schlaad, H.: Fibrillar gels via the self-assembly of poly(L-glutamate)-based statistical copolymers. Polymer Chemistry 6 (28), pp. 5040 - 5052 (2015)
Yashchenok, A. M.; Masic, A.; Gorin, D.; Inozemtseva, O.; Shim, B. S.; Kotov, N.; Skirtach, A.; Möhwald, H.: Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. Small 11 (11), pp. 1320 - 1327 (2015)
Challenge: It's not just whether a membrane is in a "solid" or "liquid" state that matters—how tightly its molecules are packed also influences how protein-rich droplets (condensates) stick to it Finding: More tightly packed membranes push away condensates, while loosely packed ones attract them Impact: Understanding these interactions is key to grasping essential cellular functions and disease progression
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.