Fink, H. P.; Walenta, E.; Philipp, B.: Investigations of the time dependence of the conversion of cellulose to alkali cellulose by X-ray diffraction. Das Papier 53 (1), pp. 25 - 31 (1999)
Philipp, B.; Wagenknecht, W.; Nehls, I.; Klemm, D.; Stein, A.; Heinze, T.: Regioselective derivatization of cellulose - routes of synthesis, effects on properties and areas of application. Polymer News 21, pp. 155 - 161 (1996)
Weigel, P.; Gensrich, J.; Wagenknecht, W.; Klemm, D.; Erler, U.; Philipp, B.: Modelluntersuchungen zum Einfluß einer Zwischenderivatisierung auf Struktur und Eigenschaften von Regeneratcelluosefäden. Papier 50 (9), pp. 483 - 490 (1996)
Philipp, B.; Wagenknecht, W.; Wagenknecht, M.; Nehls, I.; Klemm, D.; Stein, A.; Heinze, T.; Heinze, U.; Helbig, K.; Camacho, J.: Regioselektive Veresterung und Veretherung von Cellulose und Cellulosederivaten. Teil 1. Problemstellung und Beschreibung der Reaktionssysteme. Das Papier 49, pp. 3 - 7 (1995)
Nehls, I.; Wagenknecht, W.; Philipp, B.; Stscherbina, D.: Characterization of cellulose and cellulose derivatives in solution by high-resolution 13C-NMR-spectroscopy. Progress in Polymer Science 19 (1), pp. 29 - 78 (1994)
Schuldt, U.; Philipp, B.; Klemm, D.; Stein, A.; Jancke, H.; Nehls, I.: Comparative investigations on the silylation of cellulose with monofunctional and multifunctional organosilanes. Das Papier 48 (1), pp. 3 - 17 (1994)
Kötz, J.; Hahn, M.; Philipp, B.; Bekturov, E. A.; Kudaibergenov, S. E.: Inter- and intramolecular interactions in polyelectrolyte complex formation with polyampholytes. Makromolekulare Chemie 194, pp. 397 - 410 (1993)
Lavrenko, P. N.; Okatova, O. V.; Dautzenberg, H.; Philipp, B.: Molecular inhomogeneity of carboxymethyl cellulose from fractionation and sedimentation velocity data. Cellulose Chemistry and Technology 27, pp. 469 - 476 (1993)
Okatova, O. V.; Lavrenko, P. N.; Dautzenberg, H.; Philipp, B.: Molecular inhomogeneity of carboxymethyl cellulose as measured by high-speed sedimentation and fractionation. VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A & SERIYA B 35, pp. 663 - 668 (1993)
Philipp, B.: Organic-solvents for cellulose as a biodegradable polymer and their applicability for cellulose spinning and derivatization. Journal of Macromolecular Science-Pure and Applied Chemistry A30 (9-10), pp. 703 - 714 (1993)
Wagenknecht, W.; Nehls, I.; Philipp, B.: Studies of the regioselectivity of cellulose sulfation in an N₂O₄-N,N-dimethylformamide-cellulose system. Carbohydrate Research 240, pp. 245 - 252 (1993)
Fink, H. P.; Philipp, B.; Zschunke, C.; Hayn, M.: Structural-changes of LODP cellulose in the original and mercerized state during enzymatic-hydrolysis. Acta Polymerica 43 (5), pp. 270 - 274 (1992)
Challenge: It's not just whether a membrane is in a "solid" or "liquid" state that matters—how tightly its molecules are packed also influences how protein-rich droplets (condensates) stick to it Finding: More tightly packed membranes push away condensates, while loosely packed ones attract them Impact: Understanding these interactions is key to grasping essential cellular functions and disease progression
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.