Overkleeft, H. S.; Seeberger, P. H.: Chemoenzymatic synthesis of glycans and glycoconjugates. In: Essentials of Glycobiology, 3rd Edition Ed., pp. 691 - 700 (Ed. Varki, A.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)
Penadés, S.; Davis, B. G.; Seeberger, P. H.: Glycans in nanotechnology. In: Essentials of Glycobiology, 3rd Edition Ed., pp. 742 - 754 (Ed. Varki, A.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)
Seeberger, P. H.: Synthetische Zucker und die molekulare Medizin. In: Alles Zucker!: Nahrung - Werkstoff - Energie, pp. 153 - 160 (Eds. Koesling, V.; Spierling, R.). be.bra verlag, Berlin (2017)
Seeberger, P. H.: Zuckermoleküle in der regenerativen Medizin. In: Alles Zucker!: Nahrung - Werkstoff - Energie, pp. 161 - 169 (Eds. Koesling, V.; Spierling, R.). be.bra verlag, Berlin (2017)
Seeberger, P. H.: Monosaccharide diversity. In: Essentials of Glycobiology, 3rd Edition Ed., pp. 19 - 30 (Ed. Varki, A.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)
Seeberger, P. H.; Cummings, R. D.: Glycans in biotechnology and the pharmaceutical industry. In: Essentials of Glycobiology, 3rd Edition Ed., pp. 729 - 742 (Ed. Varki, A.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)
Seeberger, P. H.; Overkleeft, H. S.: Chemical synthesis of glycans and glycoconjugates. In: Essentials of Glycobiology, 3rd Edition Ed., pp. 681 - 690 (Ed. Varki, A.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)
Hurevich, M.; Kandasamy, J.; Seeberger, P. H.: Automated oligosaccharide synthesis: techniques and applications. In: Glycochemical Synthesis: Strategies and Applications, pp. 189 - 204 (Eds. Hung, S.-C.; Zulueta, M. M. L.). John Wiley & Sons, Hoboken, New Jersey (2016)
Rademacher, C.; Seeberger, P. H.: High-throughput synthesis of diverse compound collections for lead discovery and optimization. In: Handbook of Experimental Pharmacology, Vol. 232, pp. 73 - 89. Springer, Switzerland (2016)
Bröcker, F.; Chakkumkal, A.; Seeberger, P. H.: Generation of monoclonal antibodies against defined oligosaccharide antigens. In: Carbohydrate-Based Vaccines, pp. 57 - 80 (Ed. Lepenies, B.). Springer Science+Business Media, New York (2015)
Seeberger, P. H.: Impfstoffe und Wirkstoffe - von der Grundlagenforschung zur Anwendung. In: Wie kommt das Neue in Technik und Medizin?, pp. 238 - 246 (Ed. Popp, M.). Karl Heinz Beckurts Stiftung, Garching (2014)
Schumann, B.; Anish, C.; Pereira, C. L.; Seeberger, P. H.: Carbohydrate Vaccines. In: Biotherapeutics: Recent Development using Chemical and Molecular Biology, pp. 68 - 104 (Eds. Jones, L. H.; McKnight, A. J.). RSC, Cambridge (2013)
Vilotijevic, I.; Götze, S.; Seeberger, P. H.; Varón Silva, D.: Chemical synthesis of GPI anchors and GPI-anchored molecules. In: Modern synthetic methods in carbohydrate chemistry: from monosaccharides to complex glycoconjugates, pp. 335 - 372 (Eds. Werz, D. B.; Vidal, S.). Wiley-VCH, Weinheim (2013)
de Paz, J. L.; Seeberger, P. H.: Recent advances and future challenges in glycan microarray technology. In: Methods in Molecular Biology, Vol. 808, pp. 1 - 12. Humana Press, Totowa, NJ (2012)
Oberli, M.; Horlacher, T.; Werz, D. B.; Seeberger, P. H.: Synthetic oigosaccharide bacterial antigens to produce monoclonal antibodies for diagnosis and treatment of disease using Bacillus anthracis as a case study. In: Anticarbohydrate antibodies: from molecular basis to clinical application, pp. 37 - 54 (Eds. Kosma, P.; Müller-Loennies, S.). Springer-Verlag, Wien (2012)
Castagner, B.; Esposito, D.; Seeberger, P. H.: Automated solid phase oligosaccharide synthesis. In: Glycosylation in Diverse Cell Systems: Challenges and New Frontiers in Experimental Biology, pp. 237 - 270 (Eds. Brooks, S. A.; Rudd, P. M.; Appelmiek, B. J.). Society for Experimental Biology, London (2011)
Horlacher, T.; Seeberger, P. H.: Glycan arrays. In: Glycosylation in Diverse Cell Systems: Challenges and New Frontiers in Experimental Biology, pp. 197 - 212 (Eds. Brooks, S. A.; Rudd, P. M.; Appelmiek, B. J.). Society for Experimental Biology, London (2011)
Kikkeri, R.; Hong, S. Y.; Grünstein, D.; Laurino, P.; Seeberger, P. H.: Carbohydrate-based nanoscience: metallo-glycodendrimers and quantum dots as multivalent probes. In: Proceedings of the International Beilstein Symposium on Functional Nanoscience, pp. 143 - 166 (Eds. Hicks, M. G.; Kettner, C.). Logos-Verlag, Berlin (2011)
The Department of Sustainable and Bio-Inspired Materials (SBM) was one of 24 teams selected from over 270 applicants for the Best Research Environment Award, launched in 2024 by Die Junge Akademie and the Volkswagen Foundation.
We left the lab coat hanging for a day—but brought our lab equipment with us to meet more than 8,200 visitors. At our 10 stations, we showcased how we learn from nature to develop sustainable solutions—from dye- and pigment-free colors to bio-inspired materials for construction, medicine, and design.
Supported by the EU’s Marie Skłodowska-Curie Actions and the UK Guarantee Scheme, the 'Condensates at Membrane Scaffolds – Integrated Systems as Synthetic Cell Compartments’ doctoral network seeks 17 PhD candidates. This international and interdisciplinary program aims to train future biomedical and biotechnology researchers to explore cellular…
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.