Hörth, R. M.; Kerschnitzki, M.; Aido, M.; Schmidt, I.; Burghammer, M.; Duda, G. N.; Fratzl, P.; Willie, B. M.; Wagermaier, W.: Correlations between nanostructure and micromechanical properties of healing bone. Journal of the Mechanical Behavior of Biomedical Materials 77, pp. 258 - 266 (2018)
Aido, M.; Kerschnitzki, M.; Hörth, R. M.; Checa, S.; Spevak, L.; Boskey, A. L.; Fratzl, P.; Duda, G. N.; Wagermaier, W.; Willie, B. M.: Effect of in vivo loading on bone composition varies with animal age. Experimental Gerontology 63, pp. 48 - 58 (2015)
Aido, M.; Kerschnitzki, M.; Hörth, R. M.; Burghammer, M.; Montero, C.; Checa, S.; Fratzl, P.; Duda, G. N.; Willie, B. M.; Wagermaier, W.: Relationship between nanoscale mineral properties and calcein labeling in mineralizing bone surfaces. Connective Tissue Research 55, pp. 15 - 17 (2014)
Kerschnitzki, M.; Zander, T.; Zaslansky, P.; Fratzl, P.; Shahar, R.; Wagermaier, W.: Rapid alterations of avian medullary bone material during the daily egg-laying cycle. Bone 69, pp. 109 - 117 (2014)
Gupta, H. S.; Krauss, S.; Kerschnitzki, M.; Karunaratne, A.; Dunlop, J. W. C.; Barber, A. H.; Boesecke, P.; Funari, S.S.; Fratzl, P.: Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. Journal of the Mechanical Behavior of Biomedical Materials 28, pp. 366 - 382 (2013)
Idelevich, A.; Kerschnitzki, M.; Shahar, R.; Monsonego-Ornan, E.: 1,25(OH)2D3 alters growth plate maturation and bone architecture in young rats with normal renal function. PLoS One 6 (6), e20772 (2011)
Kerschnitzki, M.; Wagermaier, W.; Liu, Y. F.; Roschger, P.; Duda, G. N.; Fratzl, P.: Poorly ordered bone as an endogenous scaffold for the deposition of highly oriented lamellar tissue in rapidly growing ovine bone. Cells Tissues Organs 194 (2-4), pp. 119 - 123 (2011)
Kerschnitzki, M.; Wagermaier, W.; Roschger, P.; Seto, J.; Shahar, R.; Duda, G. N.; Mundlos, S.; Fratzl, P.: The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. Journal of Structural Biology 173 (2), pp. 303 - 311 (2011)
Benecke, G.; Kerschnitzki, M.; Fratzl, P.; Gupta, H. S.: Digital image correlation shows localized deformation bands in inelastic loading of fibrolamellar bone. Journal of Materials Research 24 (2), pp. 421 - 429 (2009)
Kerschnitzki, M.; Wagermaier, W.; Roschger, P.; Seto, J.; Shahar, R.; Duda, G.; Mundlos, S.; Fratzl, P.: The organization of the osteocyte network in bone and potential mechanisms of passive mineral dissolution. In Bone, 48 (Suppl. Suppl. 2), p. S139 - S139. Elsevier, New York (2011)
Gupta, H.; Krauss, S.; Seto, J.; Wagermaier, W.; Kerschnitzki, M.; Benecke, G.; Zaslansky, P.; Boesecke, P.; Funari, S. S.; Kirchner, H. O. K.et al.; Fratzl, P.: Nanoscale deformation mechanisms in bone. In Bone, 44 (Suppl. 1), 046, pp. S33 - S34. 2nd Joint Meeting of the International-Bone-and-Mineral-Society/Australian-New-Zealand-Bone-and-Mineral-Society, Sydney, March 21, 2009 - March 25, 2009. Elsevier, New York (2009)
Kerschnitzki, M.: Bone material characteristics influenced by osteocytes. Dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I (2012)
Kerschnitzki, M.: Die Kontrolle der mechanischen Eigenschaften von Knochen durch die Veränderung der Temperatur, der Dehnrate, des pH-Wertes und des ionischen Mediums. Diploma, Universität Potsdam, Potsdam (2008)
Supported by the EU’s Marie Skłodowska-Curie Actions and the UK Guarantee Scheme, the 'Condensates at Membrane Scaffolds – Integrated Systems as Synthetic Cell Compartments’ doctoral network seeks 17 PhD candidates. This international and interdisciplinary program aims to train future biomedical and biotechnology researchers to explore cellular…
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.