de Geest, B. G.; de Koker, S.; Sukhorukov, G. B.; Kreft, O.; Parak, W. J.; Skirtach, A. G.; Demeester, J.; de Smedt, S. C.; Hennink, W. E.: Polyelectrolyte microcapsules for biomedical applications. Soft Matter 5 (2), pp. 282 - 291 (2009)
Palankar, R.; Skirtach, A. G.; Kreft, O.; Bedard, M.; Garstka, M.; Gould, K.; Möhwald, H.; Sukhorukov, G. B.; Winterhalter, M.; Springer, S.: Controlled intracellular release of peptides from microcapsules enhances antigen presentation on MHC class I molecules. Small 5 (19), pp. 2168 - 2176 (2009)
Javier, A. M.; Kreft, O.; Semmling, M.; Kempter, S.; Skirtach, A. G.; Bruns, O. T.; del Pino, P.; Bedard, M. F.; Raedler, J.; Kaes, J.et al.; Plank, C.; Sukhorukov, G. B.; Parak, W. J.: Uptake of colloidal polyelectrolyte-coated particles and polyelectrolyte multilayer capsules by living cells. Advanced Materials 20 (22), pp. 4281 - 4287 (2008)
Semmling, M.; Kreft, O.; Javier, A. M.; Sukhorukov, G. B.; Kas, J.; Parak, W. J.: A novel flow-cytometry-based assay for cellular uptake studies of polyelectrolyte microcapsules. Small 4 (10), pp. 1763 - 1768 (2008)
Wattendorf, U.; Kreft, O.; Textor, M.; Sukhorukov, G. B.; Merkle, H. P.: Stable stealth function for hollow polyelectrolyte microcapsules through a poly(ethylene glycol) grafted polyelectrolyte adlayer. Biomacromolecules 9 (1), pp. 100 - 108 (2008)
Kreft, O.; Javier, A. M.; Sukhorukov, G. B.; Parak, W. J.: Polymer microcapsules as mobile local pH-sensors. Journal of Materials Chemistry 17 (42), pp. 4471 - 4476 (2007)
Kreft, O.; Skirtach, A. G.; Sukhorukov, G. B.; Möhwald, H.: Remote control of bioreactions in multicompartment capsules. Advanced Materials 19 (20), pp. 3142 - 3145 (2007)
Javier, A. M.; Kreft, O.; Alberola, A. P.; Kirchner, C.; Zebli, B.; Susha, A. S.; Horn, E.; Kempter, S.; Skirtach, A. G.; Rogach, A. L.et al.; Radler, J.; Sukhorukov, G. B.; Benoit, M.; Parak, W. J.: Combined atomic force microscopy and optical microscopy measurements as a method to investigate particle uptake by cells. Small 2 (3), pp. 394 - 400 (2006)
Kreft, O.; Georgieva, R.; Bäumler, H.; Steup, M.; Müller-Röber, B.; Sukhorukov, G. B.; Möhwald, H.: Red blood cell templated polyelectrolyte capsules: A novel vehicle for the stable encapsulation of DNA and proteins. Macromolecular Rapid Communications 27 (6), pp. 435 - 440 (2006)
Skirtach, A. G.; Javier, A. M.; Kreft, O.; Köhler, K.; Alberola, A. P.; Möhwald, H.; Parak, W. J.; Sukhorukov, G. B.: Laser-induced release of encapsulated materials inside living cells. Angewandte Chemie International Edition 45 (28), pp. 4612 - 4617 (2006)
Kirchner, C.; Javier, A. M.; Susha, A. S.; Rogach, A. L.; Kreft, O.; Sukhorukov, G. B.; Parak, W. J.: Cytotoxicity of nanoparticle-loaded polymer capsules. Talanta 67 (3), pp. 486 - 491 (2005)
Skirtach, A.; Kreft, O.: Stimuli-sensitive nanotechnology for drug delivery. In: Nanotechnology in Drug Delivery, Vol. 662 S., pp. 545 - 578 (Eds. deVilliers, M. M.; Aramwit, P.; Kwon, G. S.). Springer, New York (2009)
Supported by the EU’s Marie Skłodowska-Curie Actions and the UK Guarantee Scheme, the 'Condensates at Membrane Scaffolds – Integrated Systems as Synthetic Cell Compartments’ doctoral network seeks 17 PhD candidates. This international and interdisciplinary program aims to train future biomedical and biotechnology researchers to explore cellular…
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.