Paris, M.; Götz, A.; Hettrich, I.; Bidan, C. M.; Dunlop, J. W. C.; Razi, H.; Zizak, I.; Hutmacher, D. W.; Fratzl, P.; Duda, G. N.et al.; Wagermaier, W.; Cipitria, A.: Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomaterialia 60, pp. 64 - 80 (2017)
Hiorns, J. E.; Bidan, C. M.; Jensen, O. E.; Gosens, R.; Kistemaker, L. E. M.; Fredberg, J. J.; Butler, J. P.; Krishnan, R.; Brook, B. S.: Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice. Frontiers in Physiology 7, 309 (2016)
Perrin, B. R. M.; Braccini, M.; Bidan, C. M.; Derail, C.; Papon, E.; Leterrier, Y.; Barrandon, Y.: Adhesion of surgical sealants used in cardiothoracic and vascular surgery. International Journal of Adhesion and Adhesives 70, pp. 81 - 89 (2016)
Ehrlicher, A. J.; Krishnan, R.; Guo, M.; Bidan, C. M.; Weitz, D. A.; Pollak, M. R.: Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proceedings of the National Academy of Sciences of the United States of America 112 (21), pp. 6619 - 6624 (2015)
Herklotz, M.; Prewitz, M. C.; Bidan, C. M.; Dunlop, J. W. C.; Fratzl, P.; Werner, C.: Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth in vitro. Biomaterials 60, pp. 121 - 129 (2015)
Bidan, C. M.; Wang, F. M.; Dunlop, J. W. C.: A three-dimensional model for tissue deposition on complex surfaces. Computer Methods in Biomechanics and Biomedical Engineering 16 (10), pp. 1056 - 1070 (2013)
Gamsjäger, E.; Bidan, C. M.; Fischer, F. D.; Fratzl, P.; Dunlop, J. W. C.: Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomaterialia 9 (3), pp. 5531 - 5543 (2013)
Bidan, C. M.: The role of mechanics in the growth and modeling of biological materials. In: Design, Gestaltung, Formatività: Philosophies of making, pp. 329 - 342 (Ed. Ribault, P.). Birkhäuser, Berlin, Boston (2022)
van Dijk, M. E.; Culha, S.; Bidan, C.; Menzen, M.; Gosens, R.: Ex Vivo Elastase Treatment Disrupts Parenchymal Structure And Enhances Airway Narrowing in Precision Cut Lung Slices. The FASEB Journal 30 (1 Supplement), p. 1263.3 - 1263.3 (2016)
Bidan, C. M.; Kollmannsberger, P.; Kommareddy, K. P.; Rumpler, M.; Bréchet, Y. J. M.; Fratzl, P.; Dunlop, J. W. C.: From cell contractility to curvature-controlled tissue growth. In: 10th International Symposium on Biomechanics and Biomedical Engineering, 124. 10th International Symposium on Biomechanics and Biomedical Engineering, Berlin, April 11, 2012. (2012)
Braccini, M.; Bidan, C.; Perrin, B.; Dupeux, M.; Von Segesser, L.K.: Evaluation quantitative de l’adhérence de colles chirurgicales par la technique de gonflement-décollement. In: 19ème Congrès Français de Mécanique, Marseille, 2009. 19ème Congrès Français de Mécanique, Marseille, 2009. (2009)
Ram-Mohan, S.; Ehrlicher, A.; Bai, Y.; Schaible, N.; Yao, S.; Tatler, A. L.; Bidan, C.; Lavoie, T.; Solway, J.; Cook, D.et al.; Stoltz, D. A.; Suki, B.; Ai, X.; Krishnan, R.: A Highly Reproducible Measurement of Airway Reactivity in the Precision Cut Lung Slice. In American Thoracic Society International Conference Abstracts. American Thoracic Society International Conference, Washington DC. (2017)
Meurs, H.; Zuidhof, A. B.; Elzinga, C. R.S.; Smit, M.; Oldenburger, A.; Bidan, C. M.; Gosens, R.; Timens, W.; Maarsingh, H.: Small Airway Hyperresponsiveness in Precision-Cut Lung Slices of Patients with Mild to Moderate COPD: Relationship Between Tissue Structure and Function. In Lab Meth. and Bioeng.: Just do it, p. A7924 - A7924. American Thoracic Society International Conference , San Francisco. (2016)
Cipitria, A.; Paris, M.; Hettrich, I.; Goetz, A.; Bidan, C. M.; Dunlop, J. W.; Zizak, I.; Hutmacher, D. W.; Fratzl, P.; Wagermaier, W.et al.; Duda, G. N.: 3D Tissue Growth in vivo under Geometrical Constraints. In Tissue Engineering Part A, 21, p. S103 - S103. 4th TERMIS World Congress, Boston, MA, September 08, 2015 - September 11, 2015. Mary Ann Liebert, Larchmont, NY (2015)
We left the lab coat hanging for a day—but brought our lab equipment with us to meet more than 8,200 visitors. At our 10 stations, we showcased how we learn from nature to develop sustainable solutions—from dye- and pigment-free colors to bio-inspired materials for construction, medicine, and design.
Challenge: It's not just whether a membrane is in a "solid" or "liquid" state that matters—how tightly its molecules are packed also influences how protein-rich droplets (condensates) stick to it Finding: More tightly packed membranes push away condensates, while loosely packed ones attract them Impact: Understanding these interactions is key to grasping essential cellular functions and disease progression
Supported by the EU’s Marie Skłodowska-Curie Actions and the UK Guarantee Scheme, the 'Condensates at Membrane Scaffolds – Integrated Systems as Synthetic Cell Compartments’ doctoral network seeks 17 PhD candidates. This international and interdisciplinary program aims to train future biomedical and biotechnology researchers to explore cellular…
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.