Paris, M.; Götz, A.; Hettrich, I.; Bidan, C. M.; Dunlop, J. W. C.; Razi, H.; Zizak, I.; Hutmacher, D. W.; Fratzl, P.; Duda, G. N.et al.; Wagermaier, W.; Cipitria, A.: Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomaterialia 60, pp. 64 - 80 (2017)
Hiorns, J. E.; Bidan, C. M.; Jensen, O. E.; Gosens, R.; Kistemaker, L. E. M.; Fredberg, J. J.; Butler, J. P.; Krishnan, R.; Brook, B. S.: Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice. Frontiers in Physiology 7, 309 (2016)
Perrin, B. R. M.; Braccini, M.; Bidan, C. M.; Derail, C.; Papon, E.; Leterrier, Y.; Barrandon, Y.: Adhesion of surgical sealants used in cardiothoracic and vascular surgery. International Journal of Adhesion and Adhesives 70, pp. 81 - 89 (2016)
Ehrlicher, A. J.; Krishnan, R.; Guo, M.; Bidan, C. M.; Weitz, D. A.; Pollak, M. R.: Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proceedings of the National Academy of Sciences of the United States of America 112 (21), pp. 6619 - 6624 (2015)
Herklotz, M.; Prewitz, M. C.; Bidan, C. M.; Dunlop, J. W. C.; Fratzl, P.; Werner, C.: Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth in vitro. Biomaterials 60, pp. 121 - 129 (2015)
Bidan, C. M.; Wang, F. M.; Dunlop, J. W. C.: A three-dimensional model for tissue deposition on complex surfaces. Computer Methods in Biomechanics and Biomedical Engineering 16 (10), pp. 1056 - 1070 (2013)
Gamsjäger, E.; Bidan, C. M.; Fischer, F. D.; Fratzl, P.; Dunlop, J. W. C.: Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomaterialia 9 (3), pp. 5531 - 5543 (2013)
Bidan, C. M.: The role of mechanics in the growth and modeling of biological materials. In: Design, Gestaltung, Formatività: Philosophies of making, pp. 329 - 342 (Ed. Ribault, P.). Birkhäuser, Berlin, Boston (2022)
van Dijk, M. E.; Culha, S.; Bidan, C.; Menzen, M.; Gosens, R.: Ex Vivo Elastase Treatment Disrupts Parenchymal Structure And Enhances Airway Narrowing in Precision Cut Lung Slices. The FASEB Journal 30 (1 Supplement), p. 1263.3 - 1263.3 (2016)
Bidan, C. M.; Kollmannsberger, P.; Kommareddy, K. P.; Rumpler, M.; Bréchet, Y. J. M.; Fratzl, P.; Dunlop, J. W. C.: From cell contractility to curvature-controlled tissue growth. In: 10th International Symposium on Biomechanics and Biomedical Engineering, 124. 10th International Symposium on Biomechanics and Biomedical Engineering, Berlin, April 11, 2012. (2012)
Braccini, M.; Bidan, C.; Perrin, B.; Dupeux, M.; Von Segesser, L.K.: Evaluation quantitative de l’adhérence de colles chirurgicales par la technique de gonflement-décollement. In: 19ème Congrès Français de Mécanique, Marseille, 2009. 19ème Congrès Français de Mécanique, Marseille, 2009. (2009)
Ram-Mohan, S.; Ehrlicher, A.; Bai, Y.; Schaible, N.; Yao, S.; Tatler, A. L.; Bidan, C.; Lavoie, T.; Solway, J.; Cook, D.et al.; Stoltz, D. A.; Suki, B.; Ai, X.; Krishnan, R.: A Highly Reproducible Measurement of Airway Reactivity in the Precision Cut Lung Slice. In American Thoracic Society International Conference Abstracts. American Thoracic Society International Conference, Washington DC. (2017)
Meurs, H.; Zuidhof, A. B.; Elzinga, C. R.S.; Smit, M.; Oldenburger, A.; Bidan, C. M.; Gosens, R.; Timens, W.; Maarsingh, H.: Small Airway Hyperresponsiveness in Precision-Cut Lung Slices of Patients with Mild to Moderate COPD: Relationship Between Tissue Structure and Function. In Lab Meth. and Bioeng.: Just do it, p. A7924 - A7924. American Thoracic Society International Conference , San Francisco. (2016)
Cipitria, A.; Paris, M.; Hettrich, I.; Goetz, A.; Bidan, C. M.; Dunlop, J. W.; Zizak, I.; Hutmacher, D. W.; Fratzl, P.; Wagermaier, W.et al.; Duda, G. N.: 3D Tissue Growth in vivo under Geometrical Constraints. In Tissue Engineering Part A, 21, p. S103 - S103. 4th TERMIS World Congress, Boston, MA, September 08, 2015 - September 11, 2015. Mary Ann Liebert, Larchmont, NY (2015)
The Department of Sustainable and Bio-Inspired Materials (SBM) was one of 24 teams selected from over 270 applicants for the Best Research Environment Award, launched in 2024 by Die Junge Akademie and the Volkswagen Foundation.
We left the lab coat hanging for a day—but brought our lab equipment with us to meet more than 8,200 visitors. At our 10 stations, we showcased how we learn from nature to develop sustainable solutions—from dye- and pigment-free colors to bio-inspired materials for construction, medicine, and design.
Challenge: It's not just whether a membrane is in a "solid" or "liquid" state that matters—how tightly its molecules are packed also influences how protein-rich droplets (condensates) stick to it Finding: More tightly packed membranes push away condensates, while loosely packed ones attract them Impact: Understanding these interactions is key to grasping essential cellular functions and disease progression
Supported by the EU’s Marie Skłodowska-Curie Actions and the UK Guarantee Scheme, the 'Condensates at Membrane Scaffolds – Integrated Systems as Synthetic Cell Compartments’ doctoral network seeks 17 PhD candidates. This international and interdisciplinary program aims to train future biomedical and biotechnology researchers to explore cellular…
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.