Paschalis, E. P.; Gamsjaeger, S.; Fratzl-Zelman, N.; Roschger, P.; Masic, A.; Brozek, W.; Hassler, N.; Glorieux, F. H.; Rauch, F.; Klaushofer, K.et al.; Fratzl, P.: Evidence for a role for nanoporosity and pyridinoline content in human mild osteogenesis imperfecta. Journal of Bone and Mineral Research 31 (5), pp. 1050 - 1059 (2016)
Akiva, A.; Malkinson, G.; Masic, A.; Kerschnitzki, M.; Bennet, M.; Fratzl, P.; Addadi, L.; Weiner, S.; Yaniv, K.: On the pathway of mineral deposition in larval zebrafish caudal fin bone. Bone 75, pp. 192 - 200 (2015)
Atkins, A.; Reznikov, N.; Ofer, L.; Masic, A.; Weiner, S.; Shahar, R.: The three-dimensional structure of anosteocytic lamellated bone of fish. Acta Biomaterialia 13, pp. 311 - 323 (2015)
Cui, Q.; Xia, B.; Mitzscherling, S.; Masic, A.; Li, L.; Bargheer, M.; Möhwald, H.: Preparation of gold nanostars and their study in selective catalytic reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 465, pp. 20 - 25 (2015)
Guggolz, T.; Henne, S.; Politi, Y.; Schütz, R.; Mašić, A.; Müller, C. H. G.; Meißner, K.: Histochemical evidence of β-chitin in parapodial glandular organs and tubes of Spiophanes (Annelida, Sedentaria: Spionidae), and first studies on selected Annelida. Journal of Morphology 276 (12), pp. 1433 - 1447 (2015)
Kim, B. J.; Kim, S.; Oh, D. X.; Masic, A.; Cha, H. J.; Hwang, D. S.: Mussel-inspired adhesive protein-based electrospun nanofibers reinforced by Fe(III)-DOPA complexation. Journal of Materials Chemistry B 3 (1), pp. 112 - 118 (2015)
Masic, A.; Weaver, J. C.: Large area sub-micron chemical imaging of magnesium in sea urchin teeth. Journal of Structural Biology 189 (3), pp. 269 - 275 (2015)
Schmitt, C. N. Z.; Winter, A.; Bertinetti, L.; Masic, A.; Strauch, P.; Harrington, M. J.: Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation. Journal of the Royal Society Interface 12 (110), 20150466 (2015)
Stetciura, I. Y.; Yashchenok, A. M.; Masic, A.; Lyubin, E. V.; Inozemtseva, O. A.; Drozdova, M. G.; Markvichova, E. A.; Khlebtsov, B. N.; Fedyanin, A. A.; Sukhorukov, G. B.et al.; Gorin, D. A.; Volodkin, D.: Composite SERS-based satellites navigated by optical tweezers for single cell analysis. Analyst 140 (15), pp. 4981 - 4986 (2015)
Tadayon, M.; Amini, S.; Masic, A.; Miserez, a. A.: The mantis shrimp saddle: a biological spring combining stiffness and flexibility. Advanced Functional Materials 25 (41), pp. 6437 - 6447 (2015)
Vacogne, C. D.; Brosnan, S. M.; Masic, A.; Schlaad, H.: Fibrillar gels via the self-assembly of poly(L-glutamate)-based statistical copolymers. Polymer Chemistry 6 (28), pp. 5040 - 5052 (2015)
Yashchenok, A. M.; Masic, A.; Gorin, D.; Inozemtseva, O.; Shim, B. S.; Kotov, N.; Skirtach, A.; Möhwald, H.: Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. Small 11 (11), pp. 1320 - 1327 (2015)
With a prestigious Max Planck Fellowship (2025–2028), microbiologist Gabriele Berg from the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) is launching a research collaboration with Markus Antonietti. Together, they’re developing a solution to soil exhaustion and infertility: a custom-made soil created in the lab from plant residues, enriched with carefully selected microorganisms.
Scientists have long sought to understand the exact mechanism behind water splitting by carbon nitride catalysts. For the first time, Dr. Paolo Giusto and his team captured the step-by-step interactions at the interface between carbon nitride and water, detailing the transfer of protons and electrons from water to the catalyst under light. This…
The secret ingredient for a groundbreaking sodium-sulfur battery with improved energy performance and longer lifespan grows in our gardens: lavender. By combining lavender oil with sulfur, Dr. Paolo Giusto's team has created a unique material that solves a persistent failure problem – polysulfide shuttling. This research marks an important step toward developing more powerful and sustainable batteries for the next-generation large-scale energy storage systems.
The prestigious 25,000-euro prize recognizes Prof. Markus Antonietti's groundbreaking research in carbon catalysis. He is developing materials with tailored properties for more sustainable chemical synthesis: carbon materials are abundant in nature, consume less energy than metal catalysts, and can be reused. The same Académie once hosted Antoine Lavoisier, the 'father of modern chemistry,' who also marveled at carbon’s versatility.
Our director, Markus Antonietti, received the prestigious Solvay Chair in Chemistry. The common thread of his lectures was the "black magic" of carbon materials, which can replace transition metals as catalysts for some of the most relevant reactions, thus revolutionizing chemistry and making it greener.
Mateusz Odziomek’s research group looked to the past to create innovative carbon materials for the future. Inspired by flame-retardant fabrics from the 1950s, the team added a record-high content of phosphorus to carbons. This new material could serve as an efficient catalyst in fields ranging from pharmaceuticals to plastics production.
The German Research Foundation is supporting the research on novel artificially intelligent emulsion systems in Dr. Lukas Zeininger's Emmy Noether Junior Research Group for another three years with additional funding of about one million euros.
Aleksandr Savateev has developed a unique online database. To do so, he has analyzed and standardized research data from 300 papers published over the past forty years in the field of photocharged semiconductors.
Using targeted gamma radiation, researchers at the Institutehave revealed the appearance and the specific role of non-crystalline phases during the formation of mesocrystals. Their findings provide fundamental insights for the controlled development and design of new mesocrystalline materials.
Soils are the basis of life and climate protectors at the same time - but things are not good for them. Due to overfertilization, deforestation, salinization and overgrazing, nearly two billion hectares of arable and pasture land worldwide are affected by moderate to severe soil degradation.
As one of three award winners, Markus Antonietti receives the international research prize "Lombardia è Ricerca", endowed with 1,000,000 euros, at La Scala in Milan. The researchers have developed a process for clean energy production using "artificial photosynthesis" modeled on nature.