Amor, M.; Mosselmans, J. F. W.; Scoppola, E.; Li, C.; Faivre, D.; Chevrier, D. M.: Crystal–chemical and biological controls of elemental incorporation into magnetite nanocrystals. ACS Nano 17 (2), pp. 927 - 939 (2023)
De Falco, P.; Weinkamer, R.; Wagermaier, W.; Li, C.; Snow, T.; Terrill, N. J.; Gupta, H. S.; Goyal, P.; Stoll, M.; Benner, P.et al.; Fratzl, P.: Tomographic X-ray scattering based on invariant reconstruction: analysis of the 3D nanostructure of bovine bone. Journal of Applied Crystallography 54 (2), pp. 486 - 497 (2021)
Egglseder, M.; Cruden, A. R.; Tomkins, A. G.; Wilson, S. A.; Dalstra, H. J.; Rielli, A.; Li, C.; Baumgartner, J.; Faivre, D.: Tiny particles building huge ore deposits – Particle-based crystallisation in banded iron formation-hosted iron ore deposits (Hamersley Province, Australia). Ore Geology Reviews 104, pp. 160 - 174 (2019)
Benecke, G.; Wagermaier, W.; Li, C.; Schwartzkopf, M.; Flucke, G.; Hörth, R. M.; Zizak, I.; Burghammer, M.; Metwalli, E.; Müller-Buschbaum, P.et al.; Trebbin, M.; Förster, S.; Paris, O.; Roth, S. V.; Fratzl, P.: A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. Journal of Applied Crystallography 47, pp. 1797 - 1803 (2014)
Rennhofer, H.; Puchegger, S.; Pabisch, S.; Rentenberger, C.; Li, C.; Siegel, S.; Steiger-Thirsfeld, A.; Paris, O.; Peterlik, H.: The structural evolution of multi-layer graphene stacks in carbon fibers under load at high temperature - a synchrotron radiation study. Carbon 80, pp. 373 - 381 (2014)
Politi, Y.; Priewasser, M.; Pippel, E.; Zaslansky, P.; Hartmann, J.; Siegel, S.; Li, C. H.; Barth, F. G.; Fratzl, P.: A spider’s fang: how to design an injection needle using chitin-based composite material. Advanced Functional Materials 22 (12), pp. 2519 - 2528 (2012)
Lange, C.; Li, C.; Inderchand, M.; Wagermaier, W.; Kühnisch, J.; Kolanczyk, M.; Mundlos, S.; Knaus, P.; Fratzl, P.: Fetal and postnatal mouse bone tissue contains more calcium than is present in hydroxyapatite. Journal of Structural Biology 176 (2), pp. 159 - 167 (2011)
Gourrier, A.; Li, C. H.; Siegel, S.; Paris, O.; Roschger, P.; Klaushofer, K.; Fratzl, P.: Scanning small-angle X-ray scattering analysis of the size and organization of the mineral nanoparticles in fluorotic bone using a stack of cards model. Journal of Applied Crystallography 43, pp. 1385 - 1392 (2010)
Li, C. H.; Paris, O.; Siegel, S.; Roschger, P.; Paschalis, E. P.; Klaushofer, K.; Fratzl, P.: Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. Journal of Bone and Mineral Research 25 (5), pp. 968 - 975 (2010)
Mahamid, J.; Aichmayer, B.; Shimoni, E.; Ziblat, R.; Li, C. H.; Siegel, S.; Paris, O.; Fratzl, P.; Weiner, S.; Addadi, L.: Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Nat. Acad. Sci. USA 107 (14), pp. 6316 - 6321 (2010)
Roschger, P.; Inderchand, M.; Zoeger, N.; Meirer, F.; Simon, R.; Li, C. H.; Fratzl-Zelman, N.; Misof, B. M.; Paschalis, E. P.; Streli, C.et al.; Fratzl, P.; Klaushofer, K.: Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. Journal of Bone and Mineral Research 25 (4), pp. 891 - 900 (2010)
Al-Sawalmih, A.; Li, C. H.; Siegel, S.; Fabritius, H.; Yi, S. B.; Raabe, D.; Fratzl, P.; Paris, O.: Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the american lobster. Advanced Functional Materials 18 (20), pp. 3307 - 3314 (2008)
Paris, O.; Li, C. H.; Siegel, S.; Weseloh, G.; Emmerling, F.; Riesemeier, H.; Erko, A.; Fratzl, P.: A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY II. Journal of Applied Crystallography 40, pp. S466 - S470 (2007)
Challenge: It's not just whether a membrane is in a "solid" or "liquid" state that matters—how tightly its molecules are packed also influences how protein-rich droplets (condensates) stick to it Finding: More tightly packed membranes push away condensates, while loosely packed ones attract them Impact: Understanding these interactions is key to grasping essential cellular functions and disease progression
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.