Fernandes, F. M.; Manjubala, I.; Ruiz-Hitzky, E.: Gelatin renaturation and the interfacial role of fillers in bionanocomposites. Physical Chemistry Chemical Physics 13 (11), pp. 4901 - 4910 (2011)
Lange, C.; Li, C.; Inderchand, M.; Wagermaier, W.; Kühnisch, J.; Kolanczyk, M.; Mundlos, S.; Knaus, P.; Fratzl, P.: Fetal and postnatal mouse bone tissue contains more calcium than is present in hydroxyapatite. Journal of Structural Biology 176 (2), pp. 159 - 167 (2011)
Paschalis, E. P.; Tatakis, D. N.; Robins, S.; Fratzl, P.; Inderchand, M.; Zoehrer, R.; Gamsjaeger, S.; Buchinger, B.; Roschger, A.; Phipps, R.et al.; Boskey, A. L.; Dall'Ara, E.; Varga, P.; Zysset, P.; Klaushofer, K.; Roschger, P.: Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49 (6), pp. 1232 - 1241 (2011)
Vetter, A.; Liu, Y.; Witt, F.; Inderchand, M.; Sander, O.; Epari, D. R.; Fratzl, P.; Duda, G. N.; Weinkamer, R.: The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments. Journal of Biomechanics 44 (3), pp. 517 - 523 (2011)
Ballarre, J.; Inderchand, M.; Schreiner, W. H.; Orellano, J. C.; Fratzl, P.; Cere, S.: Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants. Acta Biomaterialia 6 (4), pp. 1601 - 1609 (2010)
Liu, Y. F.; Manjubala, I.; Schell, H.; Epari, D. R.; Roschger, P.; Duda, G. N.; Fratzl, P.: Size and habit of mineral particles in bone and mineralized callus during bone healing in sheep. Journal of Bone and Mineral Research 25 (9), pp. 2029 - 2038 (2010)
Neira, I. S.; Kolen'ko, Y. V.; Kommareddy, K. P.; Inderchand, M.; Yoshimura, M.; Guitian, F.: Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies. ACS Applied Materials and Interfaces 2 (11), pp. 3276 - 3284 (2010)
Roschger, P.; Inderchand, M.; Zoeger, N.; Meirer, F.; Simon, R.; Li, C. H.; Fratzl-Zelman, N.; Misof, B. M.; Paschalis, E. P.; Streli, C.et al.; Fratzl, P.; Klaushofer, K.: Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. Journal of Bone and Mineral Research 25 (4), pp. 891 - 900 (2010)
Inderchand, M.; Liu, Y.; Epari, D. R.; Roschger, P.; Schell, H.; Fratzl, P.; Duda, G. N.: Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 45 (2), pp. 185 - 192 (2009)
Inderchand, M.; Ponomarev, I.; Wilke, I.; Jandt, K. D.: Growth of osteoblast-like cells on biomimetic apatite-coated chitosan scaffolds. Journal of Biomedical Materials Research Part B-Applied Biomaterials 84B (1), pp. 7 - 16 (2008)
Kazanci, M.; Wagner, H. D.; Inderchand, M.; Gupta, H. S.; Paschalis, E.; Roschger, P.; Fratzl, P.: Raman imaging of two orthogonal planes within cortical bone. Bone 41 (3), pp. 456 - 461 (2007)
Kolanczyk, M.; Kossler, N.; Kuhnisch, J.; Lavitas, L.; Stricker, S.; Wilkening, U.; Inderchand, M.; Fratzl, P.; Sporle, R.; Herrmann, B. G.et al.; Parada, L. F.; Kornak, U.; Mundlos, S.: Multiple roles for neurofibromin in skeletal development and growth. Human Molecular Genetics 16 (8), pp. 874 - 886 (2007)
Rumpler, M.; Woesz, A.; Varga, F.; Inderchand, M.; Klaushofer, K.; Fratzl, P.: Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds. Journal of Biomedical Materials Research Part A 81A (1), pp. 40 - 50 (2007)
Inderchand, M.; Sastry, T. P.; Kumar, R. V. S.: Bone in-growth induced by biphasic calcium phosphate ceramic in femoral defect of dogs. Journal of Biomaterials Applications 19 (4), pp. 341 - 360 (2005)
Liu, Y.-F.; Inderchand, M.; Roschger, P.; Schell, H.; Duda, G. N.; Fratzl, P.: Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering. Journal of Physics: Conference Series 247, 012031, (2010)
Challenge: It's not just whether a membrane is in a "solid" or "liquid" state that matters—how tightly its molecules are packed also influences how protein-rich droplets (condensates) stick to it Finding: More tightly packed membranes push away condensates, while loosely packed ones attract them Impact: Understanding these interactions is key to grasping essential cellular functions and disease progression
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.