Chen, J.; Aido, M.; Roschger, A.; Van Tol, A.; Checa, S.; Willie, B. M.; Weinkamer, R.: Spatial variations in the osteocyte lacuno-canalicular network density and analysis of the connectomic parameters. PLoS ONE 19 (5), e0303515 (2024)
Akabane, C.; Pabisch, S.; Wagermaier, W.; Roschger, A.; Tobori, N.; Okano, T.; Murakami, S.; Fratzl, P.; Weinkamer, R.: The effect of aging on the nanostructure of murine alveolar bone and dentin. Journal of Bone and Mineral Metabolism: official publication of the Japanese Society for Bone and Mineral Research 39 (5), pp. 757 - 768 (2021)
Ayoubi, M.; Van Tol, A.; Weinkamer, R.; Roschger, P.; Brugger, P. C.; Berzlanovich, A.; Bertinetti, L.; Roschger, A.; Fratzl, P.: 3D interrelationship between osteocyte network and forming mineral during human bone remodeling. Advanced Healthcare Materials 10 (12), 2100113 (2021)
Lerebours, C.; Weinkamer, R.; Roschger, A.; Buenzli, P. R.: Mineral density differences between femoral cortical bone and trabecular bone are not explained by turnover rate alone. Bone Reports 13, 100731 (2020)
Moreno-Jiménez, I.; Cipitria, A.; Sánchez-Herrero, A.; Van Tol, A.; Roschger, A.; Lahr, C. A.; McGovern, J. A.; Hutmacher, D. W.; Fratzl, P.: Human and mouse bones physiologically integrate in a humanized mouse model while maintaining species-specific ultrastructure. Science Advances 6 (44), abb9265 (2020)
Roschger, A.; Wagermaier, W.; Gamsjaeger, S.; Hassler, N.; Schmidt, I.; Blouin, S.; Berzlanovich, A.; Gruber, G. M.; Weinkamer, R.; Roschger, P.et al.; Paschalis, E. P.; Klaushofer, K.; Fratzl, P.: Newly formed and remodeled human bone exhibits differences in the mineralization process. Acta Biomaterialia 104, pp. 221 - 230 (2020)
Van Tol, A.; Roschger, A.; Repp, F.; Chen, J.; Roschger, P.; Berzlanovich, A.; Gruber, G. M.; Fratzl, P.; Weinkamer, R.: Network architecture strongly influences the fluid flow pattern through the lacunocanalicular network in human osteons. Biomechanics and Modeling in Mechanobiology 19 (3), pp. 823 - 840 (2020)
Van Tol, A.; Schemenz, V.; Wagermaier, W.; Roschger, A.; Razi, H.; Vitienes, I.; Fratzl, P.; Willie, B. M.; Weinkamer, R.: The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proceedings of the National Academy of Sciences of the United States of America 117 (51), pp. 32251 - 32259 (2020)
Blouin, S.; Fratzl-Zelman, N.; Roschger, A.; Cabral, W. A.; Klaushofer, K.; Marini, J. C.; Fratzl, P.; Roschger, P.: Cortical bone properties in the Brtl/+ mouse model of Osteogenesis imperfecta as evidenced by acoustic transmission microscopy. Journal of the Mechanical Behavior of Biomedical Materials 90, pp. 125 - 132 (2019)
Fratzl-Zelman, N.; Roschger, P.; Kang, H.; Jha, S.; Roschger, A.; Blouin, S.; Deng, Z.; Cabral, W. A.; Ivovic, A.; Katz, J.et al.; Siegel, R. M.; Klaushofer, K.; Fratzl, P.; Bhattacharyya, T.; Marini, J. C.: Melorheostotic bone lesions caused by somatic mutations in MAP2K1 have deteriorated microarchitecture and periosteal reaction. Journal of Bone and Mineral Research 34 (5), pp. 883 - 895 (2019)
Buenzli, P. R.; Lerebours, C.; Roschger, A.; Roschger, P.; Weinkamer, R.: Late stages of mineralization and their signature on the bone mineral density distribution. Connective Tissue Research 59 (sup1), pp. 74 - 80 (2018)
Repp, F.; Kollmannsberger, P.; Roschger, A.; Kerschnitzki, M.; Berzlanovich, A.; Gruber, G. M.; Roschger, P.; Wagermaier, W.; Weinkamer, R.: Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons. Bone Report 6, pp. 101 - 108 (2017)
Pabisch, S.; Akabane, C.; Wagermaier, W.; Roschger, A.; Ogura, T.; Hyodo, R.; Kataoka, S.; Tobori, N.; Okano, T.; Murakami, S.et al.; Fratzl, P.; Weinkamer, R.: The nanostructure of murine alveolar bone and its changes due to type 2 diabetes. Journal of Structural Biology 196 (2), pp. 223 - 231 (2016)
Fratzl-Zelman, N.; Schmidt, I.; Roschger, P.; Roschger, A.; Glorieux, F. H.; Klaushofer, K.; Wagermaier, W.; Rauch, F.; Fratzl, P.: Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone. Bone 73, pp. 233 - 241 (2015)
Supported by the EU’s Marie Skłodowska-Curie Actions and the UK Guarantee Scheme, the 'Condensates at Membrane Scaffolds – Integrated Systems as Synthetic Cell Compartments’ doctoral network seeks 17 PhD candidates. This international and interdisciplinary program aims to train future biomedical and biotechnology researchers to explore cellular…
Scientists can now predict structural colors in bacteria. By sequencing a wide range of bacterial DNA and developing an accurate predictive model, reseachers uncovered how bacteria organize themselves into specific patterns within colonies to interfere with light and create iridescence.Their findings hold great promise for sustainable, pigment-free color production.
Biomolecular condensates may play a crucial but overlooked role in remodeling membrane structures within cells. Rumiana Dimova and her team demonstrated that these droplets can shape parts of the endoplasmic reticulum into nanotubes and double-membrane discs without the need for specific curvature-molding proteins.
Imagine switching on a light and being able to understand and control the inner dynamics of a cell. This is what the Dimova group has achieved: by shining lights of different colors on replicates of cells, they altered the interactions between cellular elements. Controlling these complex interactions enables us to deliver specific drugs directly into the cells.
Little is known yet about the interaction between these biomolecular condensate droplets and the membrane-bound organelles. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam developed synthetic membraneless organelles and visualized what happens when they meet a membrane.
Prof Silvia Vignolini, Ph.D. is establishing the new Department "Sustainable and Bio-inspired Materials". She is working at the interface of physics, chemistry, biology and materials science and perfectly complements the institute's profile of research on chemistry, materials and sustainability.