Paris, M.; Götz, A.; Hettrich, I.; Bidan, C. M.; Dunlop, J. W. C.; Razi, H.; Zizak, I.; Hutmacher, D. W.; Fratzl, P.; Duda, G. N.et al.; Wagermaier, W.; Cipitria, A.: Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomaterialia 60, pp. 64 - 80 (2017)
Hiorns, J. E.; Bidan, C. M.; Jensen, O. E.; Gosens, R.; Kistemaker, L. E. M.; Fredberg, J. J.; Butler, J. P.; Krishnan, R.; Brook, B. S.: Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice. Frontiers in Physiology 7, 309 (2016)
Perrin, B. R. M.; Braccini, M.; Bidan, C. M.; Derail, C.; Papon, E.; Leterrier, Y.; Barrandon, Y.: Adhesion of surgical sealants used in cardiothoracic and vascular surgery. International Journal of Adhesion and Adhesives 70, pp. 81 - 89 (2016)
Ehrlicher, A. J.; Krishnan, R.; Guo, M.; Bidan, C. M.; Weitz, D. A.; Pollak, M. R.: Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proceedings of the National Academy of Sciences of the United States of America 112 (21), pp. 6619 - 6624 (2015)
Herklotz, M.; Prewitz, M. C.; Bidan, C. M.; Dunlop, J. W. C.; Fratzl, P.; Werner, C.: Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth in vitro. Biomaterials 60, pp. 121 - 129 (2015)
Bidan, C. M.; Wang, F. M.; Dunlop, J. W. C.: A three-dimensional model for tissue deposition on complex surfaces. Computer Methods in Biomechanics and Biomedical Engineering 16 (10), pp. 1056 - 1070 (2013)
Gamsjäger, E.; Bidan, C. M.; Fischer, F. D.; Fratzl, P.; Dunlop, J. W. C.: Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomaterialia 9 (3), pp. 5531 - 5543 (2013)
Bidan, C. M.: The role of mechanics in the growth and modeling of biological materials. In: Design, Gestaltung, Formatività: Philosophies of making, pp. 329 - 342 (Ed. Ribault, P.). Birkhäuser, Berlin, Boston (2022)
van Dijk, M. E.; Culha, S.; Bidan, C.; Menzen, M.; Gosens, R.: Ex Vivo Elastase Treatment Disrupts Parenchymal Structure And Enhances Airway Narrowing in Precision Cut Lung Slices. The FASEB Journal 30 (1 Supplement), p. 1263.3 - 1263.3 (2016)
Bidan, C. M.; Kollmannsberger, P.; Kommareddy, K. P.; Rumpler, M.; Bréchet, Y. J. M.; Fratzl, P.; Dunlop, J. W. C.: From cell contractility to curvature-controlled tissue growth. In: 10th International Symposium on Biomechanics and Biomedical Engineering, 124. 10th International Symposium on Biomechanics and Biomedical Engineering, Berlin, April 11, 2012. (2012)
Braccini, M.; Bidan, C.; Perrin, B.; Dupeux, M.; Von Segesser, L.K.: Evaluation quantitative de l’adhérence de colles chirurgicales par la technique de gonflement-décollement. In: 19ème Congrès Français de Mécanique, Marseille, 2009. 19ème Congrès Français de Mécanique, Marseille, 2009. (2009)
Ram-Mohan, S.; Ehrlicher, A.; Bai, Y.; Schaible, N.; Yao, S.; Tatler, A. L.; Bidan, C.; Lavoie, T.; Solway, J.; Cook, D.et al.; Stoltz, D. A.; Suki, B.; Ai, X.; Krishnan, R.: A Highly Reproducible Measurement of Airway Reactivity in the Precision Cut Lung Slice. In American Thoracic Society International Conference Abstracts. American Thoracic Society International Conference, Washington DC. (2017)
Meurs, H.; Zuidhof, A. B.; Elzinga, C. R.S.; Smit, M.; Oldenburger, A.; Bidan, C. M.; Gosens, R.; Timens, W.; Maarsingh, H.: Small Airway Hyperresponsiveness in Precision-Cut Lung Slices of Patients with Mild to Moderate COPD: Relationship Between Tissue Structure and Function. In Lab Meth. and Bioeng.: Just do it, p. A7924 - A7924. American Thoracic Society International Conference , San Francisco. (2016)
Cipitria, A.; Paris, M.; Hettrich, I.; Goetz, A.; Bidan, C. M.; Dunlop, J. W.; Zizak, I.; Hutmacher, D. W.; Fratzl, P.; Wagermaier, W.et al.; Duda, G. N.: 3D Tissue Growth in vivo under Geometrical Constraints. In Tissue Engineering Part A, 21, p. S103 - S103. 4th TERMIS World Congress, Boston, MA, September 08, 2015 - September 11, 2015. Mary Ann Liebert, Larchmont, NY (2015)
The “FatLoop” project will use fatty acids from discarded oils to repurpose plastic waste into functional materials. Led by Dr. Manuel Häußler, FatLoop aims to lay the groundwork for a future beyond conventional plastics, with the long-term goal of developing fully recyclable and sustainable materials that match the versatility of plastics without their environmental footprint. The project has received €2 million in funding from the German Federal Ministry of Education and Research.
With the support of an ERC Starting Grant, Dr. John J. Molloy will use light to design 3D organoboron molecules with tailored properties. His project, LUMIBOR, exploits the hybridization of boron—an element that can switch between planar and tetrahedral atomic configurations—to fine-tune its reactions via light activation. The envisioned molecules…
The Glyconeer 3.1 represents the latest breakthrough in the automated assembly of complex sugar chains. The improved design and technology patented by Peter Seeberger’s research group make their synthesis fast, energy-efficient, and user-friendly. A better understanding of life’s most common molecules promises important advances in fields ranging from biotechnology to medicine and materials science.
Dr. Felix Löffler takes chemical synthesis out of flasks and beakers and replaces liquid solvents with solid polymer inks in a 3D multimaterial nanoprinter . A laser beam precisely transfers nanometric amounts of chemical compounds onto an acceptor surface, where thousands of different reactions can take place in parallel. The invention has applications in chemical engineering, biotechnology, and materials science.
Fucoidan, a sugar released by algae, can trap carbon dioxide (CO2) for centuries but remains poorly understood due to its complex and diverse molecular structure. Dr. Conor Crawford recreated fucoidan in the lab to study which types are most effective at storing carbon. Better knowledge of its properties could contribute to technologies against climate change.
The innovative combination of complex sugars and fluorine is a promising initial step towards developing more effective vaccines against some bacteria that cause meningitis. The compound designed by Peter Seeberger and Ryan Gilmour (University of Münster) triggered a strong immune response ...
Researchers at the MPICI have designed a carbohydrate sequence capable of folding into a stable secondary structure. Until now, such self-folding biopolymers had only been developed for DNA and proteins, and sugars were previously considered too flexible to assume a stable conformation.
At its annual meeting in Göttingen, the Max Planck Society awarded the Otto Hahn Medal 2022 to the young scientist Dr Susanne Reischauer. The prize is awarded for outstanding scientific achievements during doctoral studies.
A method has been developed that could make it harder to counterfeit products in the future. The new and patented process makes it possible to produce unique, non-copiable fluorescent patterns quickly, environmentally friendly and at low cost.
Dr. Martina Delbianco was selected to receive a grant of 1.5 million euros from the European Research Council (ERC). Over a period of five years, the EU will fund the development of programmable carbohydrate architectures, which in the long term may result in the creation of new materials from sugar.
Peter H. Seeberger received an honorary doctorate from the UCTechnology in Prague on September 23. The ceremony took place during the University’s 70th anniversary at the Strahov Monastery.
Within the next six months, the chemists Professor Peter H. Seeberger and Professor Andrei K. Yudin will conduct joint research on the automated synthesis of highly active substances.