Partial-to-Complete Wetting Transitions


    Consider a fluid system at liquid-vapor coexistence in the presence of a rigid wall that prefers the liquid. The liquid will then wet the interface between the vapor phase and the rigid wall. Partial wetting corresponds to thin liquid layers and liquid droplets with a finite contact angle whereas complete wetting is characterized by vanishing contact angle and thick liquid layers. As one moves the system along the liquid vapor coexistence line, it may undergo a transition from partial to complete wetting and, thus, from a thin to a thick wetting layer.

    The classification of these partial-to-complete wetting transitions is based on effective interface models which reveal several scaling regimes for continuous wetting transitions [1] [2] [3] [4] and local scaling fields that are singular distributions of the interfacial separation [5]. The effective interface potentials arising from molecular interactions are renormalized by shape fluctuations in the weak and strong fluctuation regimes. [3] The latter regimes are separated by an intermediate regime and have been characterized in detail for two-dimensional systems [6] and for three-dimensional systems governed by long-ranged forces [1] [2]. In the latter case, which applies to real liquids, the transitions require fine tuning of the molecular interactions. [7] Three-dimensional systems with short-ranged forces represent a borderline (or marginal) case with nonuniversal critical behavior. [8] [5]


  • H. Kusumaatmaja, Y.-H. Li, R. Dimova, and R. Lipowsky
    Intrinsic contact angle of aqueous phases at membranes and vesicles.
    Phys. Rev. Lett. 103, 238103 (2009)

  • Y.-H. Li, R. Lipowsky, and R. Dimova
    Transition from complete to partial wetting within membrane compartments.
    Transition from complete to partial wetting ... - Supporting Information.
    JACS 130, 12252-12253 (2008).

  • R. Lipowsky and S. Grotehans.
    Renormalization of hydration forces by collective protrusion modes.
    Biophys. Chem. 49 , 27-37 (1993).

  • J. Wuttke and R. Lipowsky.
    Universality classes for wetting in 2-dimensional random bond systems.
    Phys. Rev. B 44 , 13042-13052 (1991).

  • G. Forgacs, R. Lipowsky, and T.M. Nieuwenhuizen.
    The behavior of interfaces in ordered and disordered systems.
    Vol.14 of ''Phase transitions and critical phenomena'',
    pages 136-363. Academic press, London (1991).
    Table of Contents plus Appendix on ''Functional renormalization of interface potentials''
    as

  • F. Jülicher, R. Lipowsky, and H. Müller-Krumbhaar.
    Exact functional renormalization group for wetting transitions in 1+1 dimensions.
    Europhys. Lett. 11 , 657-662 (1990).

  • G. Gompper, D.M. Kroll, and R. Lipowsky.
    Non-classical wetting behavior in the solid-on-solid limit of the three-dimensional Ising model.
    Phys. Rev. B 42 , 961-964 (1990).

  • M. Huang, M.E. Fisher, and R. Lipowsky.
    Wetting in a 2-dimensional random-bond Ising model.
    Phys. Rev. B 39 , 2632-2639 (1989).

  • R. Lipowsky.
    Parabolic renormalization group flow for interfaces and membranes.
    Phys. Rev. Lett. 62 , 704-706 (1989).

  • R. Lipowsky
    Scaling properties of interfaces and membranes.
    In G. Stanley and N. Ostrowsky, editors, ''Random fluctuations and Growth''
    Vol. 157 of NATO ASI Series E (Kluwer Academic Publishers, Dordrecht, 1988).

  • R. Lipowsky and T.M. Nieuwenhuizen.
    Intermediate fluctuation regime for wetting transitions in two dimensions.
    J. Phys. A 21 , L89-L94 (1988).

  • D. Sullivan and R. Lipowsky.
    On the free energy of nematic wetting layers.
    Canad. J. Chem. 66 , 553-555 (1988).

  • R. Lipowsky and D.E. Sullivan.
    Complete wetting or near-critical adsorption?
    Phys. Rev. Lett. 60 , 242 (1988).

  • M. Gelfand and R. Lipowsky.
    Wetting on cylinders and spheres.
    Phys. Rev. B 36 , 8725-8735 (1987).

  • R. Lipowsky and M.E. Fisher.
    Scaling regimes and functional renormalization for wetting transitions.
    Phys. Rev. B 36 , 2126-2141 (1987).

  • R. Lipowsky and M.E. Fisher.
    Unusual bifurcation of renormalization group fixed points for interfacial transitions.
    Phys. Rev. Lett. 57 , 2411-2414 (1986).

  • R. Lipowsky and D.A. Huse.
    Diffusion-limited growth of wetting layers.
    Phys. Rev. Lett. 57, 353-356 (1986).

  • R. Lipowsky and M.E. Fisher.
    Wetting in random systems.
    Phys. Rev. Lett. 56 , 472-475 (1986).

  • D.M. Kroll, R. Lipowsky, and R.K.P. Zia.
    Universality classes for critical wetting.
    Phys. Rev. B 32 , 1862-1865 (1985).

  • R. Lipowsky and D.M. Kroll.
    Critical wetting in systems with long-range forces.
    Phys. Rev. Lett. 52 , 2303 (1984).

  • R. Lipowsky.
    Upper critical dimension for wetting in systems with long-range forces.
    Phys. Rev. Lett. 52, 1429-1432 (1984).

  • R. Lipowsky and G. Gompper.
    Interface delocalization transitions in finite systems.
    Phys. Rev. B 29 , 5213-5215 (1984).

  • D.M. Kroll and R. Lipowsky.
    Interface delocalization transitions in semi-infinite systems.
    Phys. Rev. B 28 , 6435-6442 (1983).

  • D.M. Kroll and R. Lipowsky.
    Universality classes for critical wetting transitions in two dimensions.
    Phys. Rev. B 28 , 5273-5280 (1983).

  • R. Lipowsky, D.M. Kroll, and R.K.P. Zia.
    Effective field theory for interface delocalization transitions.
    Phys. Rev. B 27 , 4499-4502 (1983).

  • D.M. Kroll and R. Lipowsky.
    Pinning transitions in d-dimensional Ising ferromagnets.
    Phys. Rev. B 26 , 5289-5292 (1982).