Critical Behavior of Lines and Surfaces


    Condensed and soft matter systems often contain thin structures such as domain boundaries, vortex lines, polymers, filaments, interfaces, monolayers, and membranes, which behave as 1-dimensional lines or 2-dimensional surfaces. These low-dimensional manifolds undergo shape fluctuations on many length scales that renormalize their interactions and lead to unbinding transitions between bound and unbound states. [1] These latter transitions represent wetting [2], [3] adhesion [4], and adsorption transitions [5] for interfaces, membranes, and polymers, respectively. In all cases, one encounters a strong fluctuation regime with universal critical behavior [6] [7] as well as an intermediate fluctuation regime with more complex behavior [8] [9] [10].

    The scaling properties of different systems are found to be related in unexpected ways. The continuous unbinding of two membranes in three dimensions [4], for example, exhibits the same scaling properties as the unbinding of two domain boundaries or "strings" in two dimensions [11]. For 1-dimensional lines, there is even an intimate relationship between the scaling properties of bound and unbound states [12].
    Both bundles of N strings in two dimensions [13] [14] and bunches of N membranes in three dimensions [15] undergo continuous unbinding transitions whereas bundles of N filaments unbind discontinuously in three dimensions [16]. In the continuous case, the N-dependence of the critical exponents remains an open issue [17].


  • P. Gutjahr, R. Lipowsky and J. Kierfeld
    Persistence length of semiflexible polymers and bending rigidity renormalization.
    Europhys. Lett. 76, 994 - 1000 (2006).

  • J. Kierfeld, T. Kühne and R. Lipowsky
    Discontinuous Unbinding Transitions of Filament Bundles.
    Phys. Rev. Lett. 95, 038102 (2005).

  • J. Kierfeld and R. Lipowsky
    Duality mapping and unbinding transitions of semiflexible and directed polymers.
    J. Phys. A: Math. Gen., 38, L155-L161, (2005) .

  • J. Kierfeld and R. Lipowsky
    Unbundling and desorption of semiflexible polymers.
    Europhys. Lett. 62, 285-291 (2003).

  • R. Bundschuh, M. Lässig, and R. Lipowsky.
    Semi-flexible polymers with attractive interactions.
    Eur. Phys. J. E. 3 , 295-306 (2000).

  • A. Volmer, U. Seifert, and R. Lipowsky.
    Critical behavior of interacting surfaces with tension.
    Eur. Phys. J. B 5 , 811-823 (1998).

  • C. Hiergeist and R. Lipowsky.
    Local contacts of interacting strings and membranes.
    Physica A 244 , 164-175 (1997).

  • R. Lipowsky.
    From bunches of membranes to bundles of strings.
    Z. Physik B 97 , 193-203 (1995).

  • R. Lipowsky.
    Discontinuous unbinding transitions of flexible membranes.
    J. Phys. II France 4 , 1755-1762 (1994).

  • C. Hiergeist, M. Lässig, and R. Lipowsky.
    Bundles of interacting strings in two dimensions.
    Europhys. Lett. 28 , 103-108 (1994).

  • M. Lässig and R. Lipowsky.
    Universal aspects of interacting lines and surfaces.
    In H. van Beijeren and M.H. Ernst, editors,
    ''Fundamental problems of statistical mechanics'', Vol. VIII, pages 169-206.
    Elsevier, Amsterdam (1994).

  • R. Netz and R. Lipowsky.
    Unbinding of Symmetric and Asymmetric Stacks of Membranes.
    Phys. Rev. Lett. 71 , 3596-3599 (1993).

  • R. Netz and R. Lipowsky.
    Three interacting strings in two dimensions: non-universal and multiple unbinding transitions.
    J. Phys. I France 4 , 47-75 (1994).

  • M. Lässig and R. Lipowsky.
    Critical roughening of interfaces: a new class of renormalizable field theories.
    Phys. Rev. Lett. 70 , 1131-1134 (1993).

  • S. Grotehans and R. Lipowsky.
    Delocalization transitions of low-dimensional manifolds.
    Phys. Rev. A 45 , 8644-8656 (1992).

  • R. Lipowsky.
    Typical and exceptional shape fluctuations of interacting strings.
    Europhys. Lett. 15 , 703-708 (1991).

  • F. Jülicher, R. Lipowsky, and H. Müller-Krumbhaar.
    Exact functional renormalization group for wetting transitions in 1+1 dimensions.
    Europhys. Lett. 11 , 657-662 (1990).

  • R. Lipowsky
    Shape fluctuations and critical phenomena.
    In H.~van Beijeren, editor, ''Fundamental Problems in Statistical Mechanics'', Vol. VII
    Elsevier Science Publishers (1990).

  • R. Lipowsky.
    Renormalized interactions of interfaces, membranes, and polymers.
    Physica Scripta T29 , 259-264 (1989).

  • R. Lipowsky and A. Baumgärtner.
    Adsorption transitions of polymers and crumpled membranes.
    Phys. Rev. A 40, 2078-2081 (1989).

  • T. Nattermann and R. Lipowsky.
    Vortex behavior in High-Tc superconductors with disorder.
    Phys. Rev. Lett. 61, 2508 (1988).

  • R. Lipowsky.
    Parabolic renormalization group flow for interfaces and membranes.
    Phys. Rev. Lett. 62 , 704-706 (1989).

  • R. Lipowsky.
    Lines of renormalization group fixed points for fluid and crystalline membranes.
    Europhys. Lett. 7 , 255-261 (1988).

  • R. Lipowsky
    Scaling properties of interfaces and membranes.
    In G. Stanley and N. Ostrowsky, editors, ''Random fluctuations and Growth''
    Vol. 157 of NATO ASI Series E (Kluwer Academic Publishers, Dordrecht, 1988).

  • R. Lipowsky and T.M. Nieuwenhuizen.
    Intermediate fluctuation regime for wetting transitions in two dimensions.
    J. Phys. A 21 , L89-L94 (1988).

  • R. Lipowsky and M.E. Fisher.
    Scaling regimes and functional renormalization for wetting transitions.
    Phys. Rev. B 36 , 2126-2141 (1987).

  • R. Lipowsky and M.E. Fisher.
    Unusual bifurcation of renormalization group fixed points for interfacial transitions.
    Phys. Rev. Lett. 57 , 2411-2414 (1986).

  • R. Lipowsky and S. Leibler.
    Unbinding transitions of interacting membranes.
    Phys. Rev. Lett. 56 , 2541-2544 (1986).

  • R. Lipowsky and M.E. Fisher.
    Wetting in random systems.
    Phys. Rev. Lett. 56 , 472-475 (1986).

  • R. Lipowsky.
    Nonlinear growth of wetting layers.
    J. Phys. A 18, L585-L590 (1985).

  • D.M. Kroll, R. Lipowsky, and R.K.P. Zia.
    Universality classes for critical wetting.
    Phys. Rev. B 32 , 1862-1865 (1985).

  • R. Lipowsky.
    Upper critical dimension for wetting in systems with long-range forces.
    Phys. Rev. Lett. 52, 1429-1432 (1984).

  • D.M. Kroll and R. Lipowsky.
    Universality classes for critical wetting transitions in two dimensions.
    Phys. Rev. B 28 , 5273-5280 (1983).

  • R. Lipowsky, D.M. Kroll, and R.K.P. Zia.
    Effective field theory for interface delocalization transitions.
    Phys. Rev. B 27 , 4499-4502 (1983).