Condensed and soft matter systems often contain thin structures such as
domain boundaries, vortex lines,
polymers, filaments, interfaces, monolayers, and membranes, which behave as
1-dimensional lines or 2-dimensional surfaces. These
low-dimensional manifolds
undergo shape fluctuations on many length scales that renormalize
their interactions and lead to unbinding transitions
between bound and unbound states.
[1]
These latter transitions represent wetting
[2],
[3]
adhesion
[4],
and adsorption transitions
[5]
for interfaces, membranes, and polymers, respectively.
In all cases, one encounters a strong fluctuation regime with universal
critical behavior
[6]
[7]
as well as an
intermediate fluctuation regime
with more complex behavior
[8]
[9]
[10].
The scaling properties of different systems are found to be related in unexpected ways.
The continuous unbinding of two membranes in three dimensions
[4], for example,
exhibits the same scaling properties as the unbinding of two domain boundaries or "strings"
in two dimensions
[11].
For 1-dimensional lines, there is even an intimate relationship between the
scaling properties of bound and unbound states
[12].
Both bundles of N strings in two dimensions
[13]
[14]
and
bunches of N membranes in three dimensions
[15]
undergo continuous unbinding transitions
whereas bundles of N filaments unbind discontinuously in
three dimensions
[16].
In the continuous case, the N-dependence of the
critical exponents remains an open issue
[17].
|
|
-
P. Gutjahr, R. Lipowsky and J. Kierfeld
Persistence length of semiflexible polymers and bending rigidity renormalization.
Europhys. Lett. 76, 994 - 1000 (2006).
-
J. Kierfeld, T. Kühne and R. Lipowsky
Discontinuous Unbinding Transitions of Filament Bundles.
Phys. Rev. Lett. 95, 038102 (2005).
-
J. Kierfeld and R. Lipowsky
Duality mapping and unbinding transitions of semiflexible and directed polymers.
J. Phys. A: Math. Gen., 38, L155-L161, (2005) .
-
J. Kierfeld and R. Lipowsky
Unbundling and desorption of semiflexible polymers.
Europhys. Lett. 62, 285-291 (2003).
-
R. Bundschuh, M. Lässig, and R. Lipowsky.
Semi-flexible polymers with attractive interactions.
Eur. Phys. J. E. 3 , 295-306 (2000).
-
A. Volmer, U. Seifert, and R. Lipowsky.
Critical behavior of interacting surfaces with tension.
Eur. Phys. J. B 5 , 811-823 (1998).
-
C. Hiergeist and R. Lipowsky.
Local contacts of interacting strings and membranes.
Physica A 244 , 164-175 (1997).
-
R. Lipowsky.
From bunches of membranes to bundles of strings.
Z. Physik B 97 , 193-203 (1995).
-
R. Lipowsky.
Discontinuous unbinding transitions of flexible membranes.
J. Phys. II France 4 , 1755-1762 (1994).
-
C. Hiergeist, M. Lässig, and R. Lipowsky.
Bundles of interacting strings in two dimensions.
Europhys. Lett. 28 , 103-108 (1994).
-
M. Lässig and R. Lipowsky.
Universal aspects of interacting lines and surfaces.
In H. van Beijeren and M.H. Ernst, editors,
''Fundamental
problems of statistical mechanics'', Vol. VIII, pages 169-206.
Elsevier, Amsterdam (1994).
-
R. Netz and R. Lipowsky.
Unbinding of Symmetric and Asymmetric Stacks of Membranes.
Phys. Rev. Lett. 71 , 3596-3599 (1993).
-
R. Netz and R. Lipowsky.
Three interacting strings in two
dimensions: non-universal and multiple unbinding transitions.
J. Phys. I France 4 , 47-75 (1994).
-
M. Lässig and R. Lipowsky.
Critical roughening of interfaces: a new class of renormalizable
field theories.
Phys. Rev. Lett. 70 , 1131-1134 (1993).
-
S. Grotehans and R. Lipowsky.
Delocalization transitions of low-dimensional manifolds.
Phys. Rev. A 45 , 8644-8656 (1992).
-
R. Lipowsky.
Typical and exceptional shape fluctuations of interacting
strings.
Europhys. Lett. 15 , 703-708 (1991).
-
F. Jülicher, R. Lipowsky, and H. Müller-Krumbhaar.
Exact functional renormalization group for wetting
transitions in 1+1 dimensions.
Europhys. Lett. 11 , 657-662 (1990).
-
R. Lipowsky
Shape fluctuations and critical phenomena.
In H.~van Beijeren, editor, ''Fundamental Problems in Statistical
Mechanics'', Vol. VII
Elsevier Science Publishers (1990).
-
R. Lipowsky.
Renormalized interactions of interfaces, membranes, and polymers.
Physica Scripta T29 , 259-264 (1989).
-
R. Lipowsky and A. Baumgärtner.
Adsorption transitions of polymers and crumpled membranes.
Phys. Rev. A 40, 2078-2081 (1989).
-
T. Nattermann and R. Lipowsky.
Vortex behavior in High-Tc
superconductors with disorder.
Phys. Rev. Lett. 61, 2508 (1988).
-
R. Lipowsky.
Parabolic renormalization group flow for interfaces and membranes.
Phys. Rev. Lett. 62 , 704-706 (1989).
-
R. Lipowsky.
Lines of renormalization group fixed points for fluid and
crystalline membranes.
Europhys. Lett. 7 , 255-261 (1988).
-
R. Lipowsky
Scaling properties of interfaces and membranes.
In G. Stanley and N. Ostrowsky, editors,
''Random fluctuations and
Growth''
Vol. 157 of NATO ASI Series E (Kluwer Academic
Publishers, Dordrecht, 1988).
-
R. Lipowsky and T.M. Nieuwenhuizen.
Intermediate fluctuation regime for wetting transitions in two
dimensions.
J. Phys. A 21 , L89-L94 (1988).
-
R. Lipowsky and M.E. Fisher.
Scaling regimes and functional renormalization for wetting
transitions.
Phys. Rev. B 36 , 2126-2141 (1987).
-
R. Lipowsky and M.E. Fisher.
Unusual bifurcation of renormalization
group fixed points for interfacial transitions.
Phys. Rev. Lett. 57 , 2411-2414 (1986).
-
R. Lipowsky and S. Leibler.
Unbinding transitions of interacting membranes.
Phys. Rev. Lett. 56 , 2541-2544 (1986).
-
R. Lipowsky and M.E. Fisher.
Wetting in random systems.
Phys. Rev. Lett. 56 , 472-475 (1986).
-
R. Lipowsky.
Nonlinear growth of wetting layers.
J. Phys. A 18, L585-L590 (1985).
-
D.M. Kroll, R. Lipowsky, and R.K.P. Zia.
Universality classes for critical wetting.
Phys. Rev. B 32 , 1862-1865 (1985).
-
R. Lipowsky.
Upper critical dimension for wetting in systems with long-range
forces.
Phys. Rev. Lett. 52, 1429-1432 (1984).
-
D.M. Kroll and R. Lipowsky.
Universality classes for critical wetting transitions in
two dimensions.
Phys. Rev. B 28 , 5273-5280 (1983).
-
R. Lipowsky, D.M. Kroll, and R.K.P. Zia.
Effective field theory for interface delocalization transitions.
Phys. Rev. B 27 , 4499-4502 (1983).